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Abstract

Since Satoshi Nakamoto’s breakthrough, Bitcoin has evolved from a single piece of open
source software to a vibrant ecosystem composed by developers, entrepreneurs, investors and
academics. Despite this outstanding success, several challenges have to be overcome. In partic-
ular the scalability of blockchain protocols is still an open problem, and recent attacks such as
selfish mining are an evidence that new tools are needed in order to guarantee the security of the
consensus between miners. In this work we introduce DECOR+LAMI. DECOR (DEterministic
COnflict Resolution) is a framework which purpose is to provide the right incentives in order
to align miners’ behavior to the expected properties of the protocol. On the other side, LAMI
is a set of implementation optimizations for improving block propagation between miners that
complements the DECOR protocol in order to improve scalability and security for blockchains.

1 Introduction

Since Satoshi Nakamoto’s breakthrough [13], Bitcoin, has evolved from a single piece of open
source software to a vibrant ecosystem composed by developers, entrepreneurs, investors and
academics. While the original goal of Bitcoin was to provide a mechanism for handling money
without the need of a trusted third party, the underlying technology, also called the Blockchain,
has opened the path for additional exciting applications including anonymous online pay-
ments [2], decentralized naming systems and public key infrastructure [1], and recently smart
contracts [10, 3]. Despite this outstanding success, several challenges have to be overcome. Scal-
ability has become a priority in the development roadmap of Bitcoin [15, 17] and has yielded new
proposals [8, 5, 12] regarding the consensus mechanism originally proposed by Nakamoto. On the
other hand, the security of the blockchain technology is still a matter of intense study [7, 8, 14].
In particular new kind of attacks like selfish mining [6] have shown that new tools and ideas are
needed in order to guarantee that economic incentives are aligned with the decentralized nature
of blockchain systems.

In this work we introduce DECOR+LAMI. DECOR (DEterministic COnflict Resolution) is
a framework which purpose is provide the right incentives in order to align the miners’ behavior
to the expected properties of the protocol such as fairness or bounded monetary supply for
example. The idea of DECOR is twofold: First it provides a way for miners to choose the
same block in the case of a conflict (several blocks at the same height). Second, a configurable
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incentive policy is computed by all the miners in order to assign rewards to the blocks. For
example if we want to incentivize the collaboration of miners we will give an extra reward to
blocks that reference uncles. While the full analysis of such incentive policies will be the object
of future research, we provide evidences that DECOR can be used to improve resistance against
selfish mining or guarantee a fixed money supply for inclusive blockchain protocols[12]. LAMI is
a set of implementation optimizations for improving block propagation between miners. LAMI
is fundamental complement of DECOR as it allows to consider that all miners have almost the
same view of the published blocks that are to be included in the blockchain at some point of
time.

Contributions. In this work we make the following contributions:

• We introduce a new conceptual framework, DECOR, for designing blockchain protocols.
This framework can be instantiated in different ways depending on the properties that
need to be achieved.

• We propose DECOR to be used for achieving consensus between miners when the block
interval is small, thus providing alternative to existing solutions like GHOST[9].

• We show that inclusive blockchain protocols are not resistant to selfish mining by default,
and that DECOR can be used to make this kind of attack less effective.

• We propose LAMI, a set of implementation optimizations for block propagation that com-
bined with DECOR enables to reduce latency and increase throughput.

2 Preliminaries

2.1 Notations and Definitions

If X is a bit string of length n then X [i] is the bit starting in position i+1. The XOR operator
between bit arrays is written ⊕. Let X and Y be two bit strings then X ||Y is the concatenation
of X and Y . In this paper H will denote a collision-resistant hash function. We use k to denote
the length of H’s output, that is ∀x ∈ {0, 1}∗ : |H(X)| = k. For example if H is SHA-1 then
k = 160.

The block interval is the average time between needed by the miners in order to extend the
chain by one block. In the case of Bitcoin the block interval is about 10 minutes. In the rest
of the paper 0 ≤ α ≤ 1 and β = 1− α will represent the fraction of the computational power of
the adversary and honest participant respectively.

2.2 Selfish mining

The problem of selfish mining [6] introduced by Eyal and Sirer is a surprising attack where the
adversary leverages his ability to delay the publication of mined blocks in order to decrease the
relative revenue of honest participants.

In Figure 2.2 we can see the state diagram of a selfish mining strategy where the adversary
mines in secret until (1) he manages to have a chain that is longer than the public one by at
least two blocks or (2) both public and private chains are of length one. We recall here the
description of the states:

• 0: there is only one public chain, the selfish mining attack did not start yet.

• 1: the adversary manages to compute one block. The block is kept private.

• 2: the adversary’s private chain is longer than the public one by two blocks.

• 3,...,n: the adversary’s private chain is longer than the public one by 3, ..., n blocks re-
spectively.



Figure 1: Markov decision process for selfish mining attack [6].

Let X1,X2, ...,XN be l i s t o f c o n f l i c t i n g b lock s
Let Y be the mined b lock
Let Xi := S(X1, ...,XN )
Mine on top o f Xi

[r1, r2, ..., ri, ..., rN , y] := R(X1,X2, ...,Xi, ...,XN , Y )

Listing 1: DECOR+ algorithm.

• 0’: this is the crucial state where the adversary and the honest participant’s chains are
both of length 1. The adversary then decides to publish his block so that this block can
be included in the main chain. An important parameter for this outcome is γ ∈ [0, 1], the
proportion of honest miners that will mine on top of the adversary’s block.

The intuition why the selfish mining attack works despite the mining power of the adversary
α < 50% is because the adversary can keep his risk to a minimum by releasing his block at
“the right time” (see state 0′ described above). In Section A we introduce and analyze a similar
attack for inclusive blockchain protocols.

3 DECOR+ (DEterministic COnflict Resolution)

Currently in Bitcoin when two blocks have been solved at equal height there is no clear way for
miners to decide which block should be selected to extend the chain. It has been shown that
this decision can affect the probability of success of selfish mining attacks [6] or compromise the
consensus between participants when the block interval becomes small[7].

In this paper we propose a high level strategy, DECOR that enables the miners agreeing
on the next block to mine in case of a conflict. While the implications of such strategy are
complex to analyze and require further research, we are convinced that it will lead to better
performance and security for blockchain mining protocols. In the following section we will
introduce the abstract version of the DECOR strategy and then propose some instantiations in
order to illustrate the potential of the concept.

3.1 Strategy

DECOR is a strategy which purpose is twofold:



• Choose deterministically a block to mine on top in case of conflict using the selection
function S.

• Provide the right incentives to the miners by assigning a specific reward to each block.

The general DECOR strategy is described in Listing 1. Let X1, X2, ..., XN The reward
function R assigns specific rewards r1, r2, ..., ri, ..., rN , ry to blocks X1, X2, ..., XN , Y respectively.

For example in the case of Bitcoin we have that:

R(X1, ..., XN , Y ) := [0, ..., 0, r+ Fee(Y )]

Where r is the base reward for a block (e.g.: 12.5BTC at the time) and Fee(Xj) is the
transactions fee of block Y .

Note that the reward function R can be arbitrary and in particular it is possible to assign
the transactions fee of block Xi to block Xj or simply increment the reward of the node Xi that
has been selected by the function S.

The main idea behind DECOR is to strengthen the consensus mechanism by enabling the
honest miners to take a unified decision in case a conflict occurs. Thus it is important to
highlight that DECOR is not a replacement for the longest-chain rule or could possibly be
combined with other consensus mechanism like GHOST[8]. Also DECOR implicitly considers
inclusive blockchain strategies yet it it can be instantiated without considering the inclusion of
uncles in the chain (see example above).

In the following section we describe the expected properties of the functions S and R respec-
tively.

3.1.1 Selection Function S

The selection function S is the core element of the DECOR strategy. Intuitively the function S

should enable fast and accurate consensus between miners when dealing with conflicting blocks
and also avoid this consensus mechanism to be manipulated by and adversary. So we propose
that the selection function must be:

• Deterministic: All the miners must agree on the same block if we consider that they all
share the same list of conflicting blocks.

• Non-forward settable: intuitively this means that no miner should be able to compute
his block in such a way that the probability to have this block selected is higher than 1/N
where N is the number of conflicting blocks. Here we assume that the miner does not
know the set of conflicting blocks before it starts to create/mine his own.

The first property is straightforward to define and implement. We explore here the second
property more in details.

Definition 1. Non-forward settable selection function S: Let A be an adversary and S

a selection function. We say that S is non-forward settable if and only for any X1, ..., XN−1

blocks not known by the adversary we have:

Pr[Z ← A();Z = S(X1, ..., XN−1, Z)] <
1

N

Impeding an adversary to compute block that has higher probability to be selected than
others is fundamental in order to avoid having the adversary control the consensus mechanism
for its own advantage.

Let us illustrate what can happen in the case the selection function does not have
this property. Let S be defined as follows: For any X1, ..., XN , S(X1, ..., XN) =
maxj∈[1..N ]{Fee(Xj)||H(Xj)} where Fee(X) represents the transactions fee of the block. So



here the idea is to pick the block that has the highest fee and in case other blocks share the
same fee use the hash to select only one block.

In this case we can observe that an adversary can increase its chance of having its block
selected simply by creating a block that contains transactions (possibly generated by this same
adversary) with very high fees.

Having an adversary being able to have its block selected can increase its chances to perform
a selfish mining attack for example. In section 3.2.4 we show that by picking a non-forward
settable function S we can limit the success of an adversary for such attacks.

We now instantiate a selection function and show it is non-forward settable:

Proposition 1. Let S be a selection function defined as follows: If for any X1, ..., XN , we have
that S(X1, ..., XN ) = Xj where j =

∑k

i=1(⊕
N
i=1H(Xi))[i] mod N then S is non-forward settable

(and also deterministic).

Proof. (Sketch) The fact that S is deterministic is straightforward. The idea of S is to first
compute the hash of each block and then combine all these hash values with an XOR function. If
we assume that H is a random oracle[4], then the bit arrayB = ⊕N

i=1H(Xi) belongs to a uniformly
random distribution. Then the index j is also taken from a random distribution and thus if Z
is a block computed by any adversary, we have that Pr[S(X1, ..., XN−1, Z) = Z] = 1

N
.

It is important to note the fact that while S described above is deterministic, by relying
on the random oracle we can consider that the S function operates similarly to a function that
would pick a block at random.

3.1.2 Reward function R

The reward function R enables to design incentive mechanisms for miners in order to obtain
specific behaviors. The definition of the reward function R considers the conflicting blocks as
input and also can update the rewards for these blocks. Note that, while it is not mandatory, the
function R could rely on the function S in order to assign a specific reward to the selected block.
Moreover, the reward function can take into account more factors than the mining difficulty and
transaction fees. For example in order to incentivize the inclusion of uncles while keeping the
monetary supply bounded, one can think have rewarding the miners who include all the uncles
using a publisher fee.

3.2 Applications

In this Section we illustrate how DECOR can be used to improve the efficiency and security of
blockchain protocols.

3.2.1 An alternative to GHOST

In order to increase the throughput of a blockchain protocol one can decrease the block interval
so that the number of blocks and thus transactions that are processed in a fixed time window
can increase. However setting arbitrary small confirmation time can have a negative impact on
security[7]. Thus new proposals like GHOST [16] provide alternative ways of reaching consensus
to the original “extend the longest chain rule” in Bitcoin. While DECOR and GHOST may
be used together, they share a common purpose: Indeed the selection function S enables honest
miners to agree on the block that needs to be picked in order to extend the chain and thus
decreases the probability that large forks appear in the chain whether by accident or malicious
behavior.



R(X1, ...,XN , Y ) :
Let i be the i n c l u s i o n reward
r e s = [ r

N+1 , ...,
r

N+1 ,
r

N+1 + iN ]

r e turn r e s

Listing 2: Incentivizing block inclusion

R(X1, ...,XN ,XN+1,XN+2, ...,XN+l, Y ) :
Let Xi1 ,Xi2 , ...,XiN+l

be such that
H(Xi1) < H(Xi2) < · · · < H(XiN+l

)
[ri1 , ..., riN , riN+1

, ..., riN+l
, RY ] := [ r

N+1 , ...,
r

N+1 , 0, ..., 0,
r

N+1 ]

r e turn [ri1 , ..., riN , riN+1
, ..., riN+l

, RY ]

Listing 3: Bounding the number of uncles

3.2.2 Incentivizing the inclusion of blocks

By default there is no reason why miners should reference uncles when mining their block. At
the same time there are several advantages for incentivizing miners to include uncles:

• As uncles also contain transactions, the global throughput (number of transactions pro-
cessed by second) of the blockchain will increase.

• Not including uncles may be a way to facilitate double spending attacks or selfish mining
attacks.

• Uncles inclusion favors a more collaborative approach to the issuance of new coins, facili-
tating the decentralization of the mining process.

Using the reward function R one can incentivize the inclusion of uncles by assigning an extra
reward for each uncle block that is included by the miner (see Listing 2).

3.2.3 Avoiding unbounded increase of uncles

While the inclusion of uncles has many benefits, it may create conflicts with other expected
properties of the blockchain. In particular having a fixed monetary supply is not compatible
with rewarding an unbounded number of uncles as noted by Sergio D. Lerner[11]. In the case
of DECOR the reward function can be used to incentivize miners to keep the number of uncles
below a specific threshold N . An option is for example to order the uncles by their hash and
only reward the first N uncles. The effect of this measure is that miners will not want to take
the risk to mine uncles if they already observe that N or close to N blocks have already been
mined for a block interval.

3.2.4 Improving resistance to selfish mining

As mentioned in [12] inclusive blockchain protocols are not resistant to selfish mining by default.
Even assuming all the miners have the right incentive to include all blocks (see Section 3.2.2),
selfish mining attacks still are possible. The full analysis of such an attack is available in
Appendix A. Intuitively the problem is that while the honest miner will suffer less damage in
case of a selfish mining attack, the attacker will be able to be successful while taking less risk.
In Figure 2 we can see that there exist a selfish mining strategy that becomes profitable when
α > 21% for γ = 50%.



R(X1, ...,XN , Y ) :
X = S(X1, ...XN )
Let Z be the b lock s e l e c t e d by the miner
Let Y be the mined b lock
Let p ∈ [0, 1] be the punishment f e e
i f X! = Z :

res = [ r

N+1 , ...,
r

N+1 ,
r(1−p)
N+1 ]

e l s e :
res = [ r

N+1 , ...,
r

N+1 ,
r

N+1 ]

r e turn r e s

Listing 4: DECOR algorithm with punishment fee.

In the following we show that this attack can be done less effective by using a specific reward
function (see Listing 4).

Using the punishment fee to increase the difficulty of performing a selfish min-

ing attack. We describe here a way to increase the threshold α to make a selfish mining attack
successful. The idea is to introduce a punishment fee that will be applied on the blocks mined
by any miner who does not follow the selection function. The instantiation of the DECOR
strategy with punishment fee relates the selection function S and the reward function R so that
miners who do not follow S will see the reward of their block diminished by some factor 1 − p

where p ∈ [0, 1] is an arbitrary punishment fee.
In the case of the attack described in Section A.1 we can observe that the selfish miner

cannot follow the selection function S otherwise he will not be able to inflict any damage to
honest miners. So with probability 1 the punishment fee will be applied to the first block of the
private chain of the adversary. We can also observe that it is fundamental to use a non-forward
settable selection function as otherwise the selfish miner can artificially increase the value of γ.

The consequence for the selfish miner is that the first block of his private chain will be
affected by the punishment fee which will make his attack less profitable. Concretely (see Table
2) the rewards obtained in transitions 0′ → 0, 0′ → 1 and 2 → 0 will be 1 + 0.5p, 0.5p and
1 + 0.5p respectively (instead of 1.5, 0.5 and 1.5 respectively).

In Figure 3 we can see the effect of a punishment fee of p = 50%: profitable selfish mining
attacks require now α > 36% for γ = 0.5 instead of α > 20% when not using punishment fees.

Other types of attacks. The attack described in Section A.1 is such that the selfish miner
waits for a fork in the chain and starts mining on top of a block B that will be not selected to
extend the chain considered by honest miners. The advantage for the attacker is that block B
can be mined by an honest miner so that the attacker does not need to invest computational
power at an early stage.

Another reasonable strategy for the attacker would be to compute B himself trying to lever-
age the punishment fee as follows: By publishing the new block B later the selfish miner is able
to have his block chosen by the selection function S so that blocks mined by honest miners have
their reward decreased due to the punishment fee. We give here the intuition why this strategy
may be also costly for the selfish miner: Indeed if the selection function is non-forward settable
then the selfish miner faces the following dilemma:

1. Wait for the honest miners to publish their blocks and then compute the block so that it
will be chosen by the selection function.



2. Try to compute the block while not knowing the other blocks and taking the risk to have
his block not chosen by the selection function.

The first alternative forces the selfish miner to delay his start in the computational race against
the honest miners. Note that the challenge faced by the selfish miner is to be able to mine several
blocks in a row while having less computational power than the honest majority. Clearly in this
case delaying the computation of his first block increases the risk to loose the race. The second
alternative also presents some issues for the selfish miner. Given that the selection function
is non-forward settable, the selfish miner must take a high risk of having his block not chosen
by the selection function and thus having the reward of the second block of his private chain
decreased, making the attack less practical. Finally we want to highlight that there might exist
other selfish-mining attacks that are more tolerant to the use of punishment fee. Analyzing
the impact of punishment fees on general / optimal mining attacks will be the object of future
research.

3.2.5 Achieving all security objectives through R and S

The purpose of DECOR is to provide tools to achieve several security objectives providing the
right incentives to miners. Defining security objectives and providing a solution that satisfy all of
them is a difficult task. In the previous sections we provided examples to illustrate how specific
reward functions can help to achieve a given security objective. In Table 1, we summarize the
list of security objectives mentioned in the previous sections and how a specific instantiation of
DECOR(see Listing 5) can make these security objectives compatible.

S(X1, ...,XN ) :

Let j =
∑k

i=1(⊕
N
i=1H(Xi))[i] mod N

r eturnXj

R(X1, ...,XN ,XN+1,XN+2, ..., XN+l, Y ) :
Let Xi1 ,Xi2 , ...,XiN+l

be such that
H(Xi1) < H(Xi2) < · · · < H(XiN+l

)
LetX := S(X1, ...XN )
Let Z be the b lock s e l e c t e d by the miner
Let Y be the mined b lock
Let p ∈ [0, 1] be the punishment f e e
i f X! = Z :

rY = r(1−p)
N+1

e l s e :
rY = r

N+1

Let i be the i n c l u s i o n reward
[ri1 , ..., riN , riN+1

, ..., riN+l
, RY ] := [ r

N+1 , ...,
r

N+1 , 0, ..., 0, rY + iN ]

r e turn [ri1 , ..., riN , riN+1
, ..., riN+l

, RY ]

Listing 5: Compatibilizing all security objectives
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Security objective Selection Function S Reward Function R

Resistance to selfish mining Must be non-forward
settable

Use the punishment fee

Bounded monetary supply The selected block must
be rewarded

Only reward the first N
uncles

Include uncles - Give an extra reward for
including uncles

Table 1: Security objectives

We can make the following observations:

• The security objectives are not necessarily independent. For example incentivizing the
inclusion of uncles indeed contributes to making selfish mining attacks less practical (see
Section 3.2.4).

• A special care needs to be taken when picking constants such as the punishment fee p,
or the inclusion reward i, as they may lead to the wrong incentives. For example if the

inclusion reward i is such that r(1−p)
N+1 << iN then selfish-mining attacks may remain

practical for low values of α.

• The selection function S and the reward function R are related to each other. For example
when bounding the number of uncles (see Section 3.2.2) it is important to ensure that the
selected block X = S(X1, X2, ..., XN ) is included as well otherwise a block included in the
main chain will not be rewarded.

3.3 Implementation as a soft-fork

When implemented in Bitcoin as a soft-fork, a reference to an uncle header can be stored in
the scriptpub of an output of the coinbase transaction (e.g. in OP RETURN payload), or in
the coinbase field. To allow reward sharing, the coinbase transaction must pay new rewards to
scriptpub OP DROP OP TRUE, so all coinbases scriptpub can be easily grabbed by miners.
However a soft-fork prevents anyone from grabbing them. The block where a coinbase becomes
mature must include a special Coinbase Split Transaction (CST) that splits the matured reward
exactly as the DECOR rule establishes, based on previously published uncles and the dropped
scriptpub scripts. A block missing the CST or having an erroneous CST is considered invalid.

4 LAMI

Bitcoin forwards each block by packing the block header with all the transactions contained
in the block. This strategy, while being the most easy to analyze, is known to perform badly
both regarding block propagation latency and bandwidth usage, which is doubled. Bitcoin
miners partially solved this problem using the Fast Relay Network (FRN): FRN is a centralized
backbone that relays blocks in a compressed form, and is maintained by a single user. The FRN
provides more fairness to miners, as it prevents bigger mining pools for taking advantage of
better network connectivity. However, for the same reason, the FRN can be a target of attack
by a big pool. Since the FRN is a non-profit community service, the attack can take several
forms, from denial-of-service attacks to any social engineering techniques.

Therefore we propose the following changes in the protocol for propagating blocks efficiently
while not relying on a centralized party:

1. Header First propagation (HEFIP)



2. Temporary Mining on Unverified Parent Blocks (TEMUP) also strangely referred as ”SPV
Mining”.

4.1 Header-first propagation of blocks (HEFIP)

We propose that blocks are sent in two stages: in the first stage only the block header is sent.
Then the full block is sent (any block compression algorithm such as ILBTs also helps). Block
headers are verified at every node and if correct, they are pushed into peers without an INV
round-trip. Headers up to 6 blocks old (as specified by its height) are broadcast. This gives
enough time to miners for including stale headers as uncles in blocks. Since the transactions in
a block are generally already known to the network, there is no benefit in transmitting them
again. Using 2SBP the channel capacity is doubled, allowing more transactions to be stored
in each block. After each node has received the block header and the transaction hash list
associated with the block header, the node attempts to reconstruct the block in order to verify
it. The peer will fetch from a peer any transaction contained in the block but missing in his
transaction pool.

4.2 Temporary Mining on unverified parents (TEMUP)

Nodes can then start mining an empty block (coinbase only) on top of a header even if the
transactions are still missing during a fixed interval. After that interval, they must resume
mining with whatever block they were mining before. Most of the time no block is solved before
the transactions arrive, and the does not solve an empty block. Even if the average block interval
is reduced to 30 seconds, empty blocks are produced with very low probability and they do not
affect the bandwidth and block-chain storage usage, because of their small size.

5 Conclusion

In this work we introduced DECOR+LAMI: DECOR is a framework to improve the scalability
and security of blockchain protocols which rely on two ideas: (1) provide a deterministic way
for solving conflicts when mining and (2) align block rewards computation with the expected
behavior of the protocol. We believe that DECOR can help in particular to decrease the block
time interval and make selfish mining attacks less effective. A main precondition for using
DECOR is that the miners share almost the same view of the published block of the blockchain
at any point of time. In order to achieve this goal we introduced LAMI, a set of implementation
optimizations that reduces latency in block propagation. Future lines of research include:

• Formalizing the class of reward functions R and analyzing how such functions can be used
for shaping the behavior of miners towards specific goals. In particular study how generic
selfish mining attacks could be prevented by using an appropriate reward mechanism.

• Understanding the relationship between the selection function and reward function.

• Providing new instantiations of DECOR and compare them to existing solutions.



A Selfish mining analysis

A.1 Idea of the attack

Figure 4: Before the attack

Figure 5: After the attack

Consider the following scenario (see Figure 4): Assume that blocks H0, H1, H2 and H3 have
been produced by honest miners that follow an inclusive blockchain protocol.

Assume that when presented the alternative to mine on top of H1 or H2, the honest miners
decide to mine of top of H2. Then according to the inclusion blockchain protocol, the uncle H1
is included as a reference in the block H3 and thus the miner who produced H1 will also be
rewarded.

The idea of selfish mining is to force honest miners to work on blocks that will not get
rewarded. By doing so the selfish miner is able to get more reward for the same computational
power compared to honest miners. By providing an incentive to include uncles, it may seem
that inclusive blockchain protocols make it more difficult to perform selfish mining, as uncles
nodes – while not being part of the main chain – will still be assigned a reward.



However the fact that only uncles are referenced by blocks of the main chain still opens the
path for selfish mining attacks.

In order to illustrate the claim above let us consider (see Figure 5) that an attacker mines
privately blocks A1 and A2 on top of H1 and A1 respectively. The selfish miner will thus try
to produce two blocks consecutively while following the protocol.

Note that in Figure 5, indeed the selfish miner – like the honest ones – mines on top (plain
line) of H1 and includes a references to H2 (dashed line) the uncle.

After successfully mining two blocks in a row the chain H0, H1, A1, A2 becomes the longest
and thus all the miners will keep mining on top of A2. The problem that occurs is that H3
which has been mined honestly will not be referenced as an uncle and thus not be assigned
any reward. This means that the computational power invested in order to produce H3 will be
wasted and thus the selfish mining attack is successful.

The state machine depicted in Figure 6 models the possible configurations and their respec-
tive probabilities of the selfish mining strategy described above. The states are:

• 0: The selfish and honest pools follow the main chain.

• U0: There is an uncle which happens with probability θ.

• 1,2,...: The selfish pool is ahead of the main chain by 1, 2, ... blocks.

• 0’: The selfish pool and the honest pool are competing with their respective chain of length
1 (from the fork).

A.2 Probabilities

By analyzing the state machine depicted in Figure 6, we obtain the following equations:

θp0 = (1− α)pU0
+ (1− α)p1 + (1− α)p2 (1)

pU0
= θp0 (2)

p1 = αpU0
(3)

p0′ = (1− α)p1 (4)

αp1 = (1− α)p2 (5)

∀k ≥ 2 : αpk = (1 − α)pk+1 (6)
∞
∑

k=0

pk + p0′ + pU0
= 1 (7)

We obtain (5) by observing that (1) ⇒ θp0 = θp0 − αpU0
+ (1− α)p1 + (1− α)p2. Then by

replacing αpU0
with p1 we obtain p1 = (1−α)p1+(1−α)p2 so we can deduce that αp1 = (1−α)p2.

From (5) and (6) we can deduce

∀k ≥ 2 : pk =

(

α

1− α

)k−1

p1 (8)

If we replace expression for p2 from Equation (8) into equation (1) we obtain:

θp0 = (1 − α)pU0
+ (1 − α)p1 + (1− α)

α

1 − α
p1 (9)

θp0 = (1− α)pU0
+ p1 (10)

p0 =
1

αθ
p1 (11)



on I n i t :
pub l i c ch a in := pub l i c l y known b lock s
p r i v a t e cha in := pub l i c l y known b lock s
p r i v a t e b r an ch l en := 0

on Fork : //That i s th e r e w i l l be an unc le
Pick the b lock with the lowest reward // ( unc le )
S tar t mining p r i v a t e l y on top o f t h i s b lock

on My Pool found a b lock :
∆prev := length ( p r i v a t e cha in )− l ength ( pub l i c ch a in )
append new block to p r i v a t e chain

i f ∆prev = 1 : //Avoid the punishment f e e
r e f e r e n c e unc le

p r i v a t e b r an ch l en := p r i v a t e b r an ch l en +1
i f (∆prev = 0) and ( p r i v a t e b r an ch l en = 2 ) :

pub l i sh a l l the p r i v a t e chain
p r i v a t e c h a i n l e n := 0

on Others found a b lock :
∆prev := length ( p r i v a t e cha in ) − l ength ( pub l i c ch a in )
append new block to pub l i c chain
i f ∆prev = 0 :

p r i v a t e cha in := pub l i c ch a in
p r i v a t e b r an ch l en := 0

e l i f ∆prev = 1 :
pub l i sh l a s t b lock or p r i v a t e chain

// Try to use a high f e e so
// that t h i s chain wins the o f f i c i a l one

e l i f ∆prev = 2 :
pub l i sh a l l p r i v a t e chain
p r i v a t e c h a i n l e n g t h := 0

e l s e :
pub l i sh f i r s t unpubl ished b lock
keep mining on top o f p r i v a t e chain

Listing 6: Selfish mining strategy for inclusive blockchain protocols



Figure 6: State machine with transition frequencies

Now can can express all probabilities defined in (7) in function of p1 using Equations (8),
(2) and (11):

∞
∑

k=0

pk + p0′ + pU0
= 1 (12)

p0 +

∞
∑

k=1

(

α

1− α

)k−1

p1 + p0′ + pU0
= 1 (13)

1

αθ
p1 +

1− α

1− 2α
p1 + (1− α)p1 +

1

α
p1 = 1 (14)

(1− 2α)αp1 + α2θp1 + α2θ(1 − 2α)(1− α)p1 + αθ(1 − 2α)p1 = α2θ(1 − 2α) (15)

α2θ(1− 2α)

(1− 2α)α+ α2θ + α2θ(1− 2α)(1 − α) + αθ(1 − 2α)
= p1 (16)

α2θ − 2α3θ

α− 2α2 + α2θ + (α2θ − 2α3θ)(1 − α) + αθ − 2α2θ
= p1 (17)

α2θ − 2α3θ

α− 2α2 − 3α3θ + 2α4θ + αθ
= p1 (18)

We now can deduce all probabilities:

p0 =
(1− 2α)

2α3θ − 3α2θ − 2α+ θ + 1
(19)

p1 =
θ(α − 2α2)

2α3θ − 3α2θ − 2α+ θ + 1
(20)

p2 =
θ(α2 − 2α3)

−2α4θ + 5α3θ − α2(3θ + 2)− α(θ − 1) + θ + 1
(21)

pk, k ≥ 3 =

(

α

1− α

)k−1
θ(α− 2α2)

2α3θ − 3α2θ − 2α+ θ + 1
(22)

p0′ =
θ(2α3 − 3α2 + α)

2α3θ − 3α2θ − 2α+ θ + 1
(23)



pU0
=

θ(1 − 2α)

2α3θ − 3α2θ − 2α+ θ + 1
(24)

A.3 Revenue

For the sake of clarity assume that the reward to be shared between blocks is 1. For example in
the case of a chain with no uncles / forks then each block will be assign reward 1. In the case
there is an uncle, then the uncle will receive reward 0.5 and the block at the tip of the chain
will also be assigned reward 0.5.

Note that this convention does not affect the final result (relative revenue) as what matters
is the ratio between the revenue of honest and selfish miners respectively.

In the following table we do not consider the revenue obtained with blockH1 andH2 because
the attack of the adversary begins after these two blocks are produced and are thus not part of
the relative revenue calculation.

State Transition Honest Adversary Adversary with
punishment fee
(p)

0 θ 0 (to be determined
later)

0 0

0 1− θ 0 (reset of the game,
adversary did not start
attack)

0 0

U0 α 0 0 (to be determined
later)

0

U0 1− α 0.5 (rewards are
shared)

0 0

1 α 0 0 (to be determined
later)

0

1 1− α 0 (to be determined
later)

0 (to be determined
later)

0

0′ α 0 1.5 1 + .0.5p
0′ γ(1− α) 1 0.5 0.5p
0′ (1− γ)(1− α) 1.5 0 0
2 α 0 (to be determined

later)
0 (to be determined
later)

0

2 1− α 0 1.5 1 + 0.5p
3 α 0 (to be determined

later)
0 (to be determined
later)

0

3 1− α 0 (to be determined
later)

0 (to be determined
later)

0

Table 2: Revenue based on states and transitions.

The relative revenue formula is:

R =
ra

ra + rh
(25)

=
1.5p0′α+ 0.5γ(1− α)p0′ + 1.5(1− α)p2

0.5(1− α)pU0
+ γ(1− α)p0′ + 1.5(1− γ)(1 − α)p0′

+ 1.5p0′α+ 0.5γ(1− α)p0′ + 1.5(1− α)p2

(26)

The curve for the relative revenue R is plotted in Figure 2. We can make the following
observations:



• R does not depend on θ as the attacker waits for an uncle to appear to start the attack.

• The mining strategy is profitable when:

– α > 0 when γ = 1

– α > 0.21 when γ = 0.5

– α > 0.34 when γ = 0
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