

● Andrew Poelstra releases work on Schnorr-based Scriptless Scripts in 2016
○ Follows up w/ construction for replacing hash-preimage challenge in LN (March 2017)
○ Ensures payment information is randomized at every hop

■ Increases privacy
■ Prevents fee-siphoning mentioned by Pedro

● In late 2017, Yehuda Lindell publishes efficient 2P-ECDSA signing protocol
○ Offers ability to do 2-of-2 ECDSA multisigs without updating consensus layer
○ Retains anonymity set of existing P2WKH wallet transactions

● April 2018, Multi-Hop Locks paper delivers formalized framework for LN hop decorrelation
○ Includes Scriptless Script construction based on 2P-ECDSA protocol
○ Shows that Schnorr and 2P-ECDSA are fully interoperable

■ Can be mixed heterogeneously on same LN path!
■ Implies that switching from ECDSA to Schnorr won’t fragment the network

LN gains of moving to Schnorr/ECDSA Multi-Hop Locks:
● Increased privacy for both on-chain and off-chain transactions
● Smaller transactions and fees
● Real proofs-of-payment (“Invoice Tunneling”)
● More extensions yet to come ;)

I. 2P-ECDSA Overview

II. Benchmarks

III. Applications to Lightning

IV. Deployment Considerations

Two participants, Alice and Bob:
● Alice has private key a and public key A = a*G
● Bob has private key b and public key B = b*G
● Jointly create public key Q = ab*G with private key ab, but...

○ neither knows ab outright, yet...
○ together they can create valid ECDSA signatures under Q

Requires two algorithms:
● KeyGen (offline):

○ Sets up Alice and Bob for participation in online signing protocol
○ More expensive, but only executed once

● Sign (online):
○ Produces an ECDSA signature under Q
○ 2 RTT

● Fast Secure Two-Party ECDSA Signing, Yehuda Lindell. https://eprint.iacr.org/2017/552.pdf
● Efficient RSA Key Generation and Threshold Paillier in the Two-Party Setting, Hazay et. al. https://eprint.iacr.org/2011/494.pdf
● A Generalisation, a Simplification and some Applications of Paillier’s Probabilistic Public-Key System, Damgard and Jurik.

http://www.brics.dk/RS/00/45/BRICS-RS-00-45.pdf

https://eprint.iacr.org/2017/552.pdf
https://eprint.iacr.org/2011/494.pdf
http://www.brics.dk/RS/00/45/BRICS-RS-00-45.pdf

● KeyGen:
○ Alice and Bob exchange pubkeys, each provides discrete log PoK
○ Alice generates a Paillier keypair (PSK, PPK)

■ Provides ZKP that PPK is constructed properly, N = p1 * p2
○ Alice encrypts her private key under PPK, creating ciphertext c = EncPPK (a)
○ Alice sends (PPK, c) to Bob

■ Provides ZKP that ciphertext contains “small” value
● i.e., 0 < DecPSK(c) < q, where q is the secp256k1 curve order

■ AND that c contains Alice’s private key, A = DecPSK(c) * G
■ Lindell had to invent a new ZKP to do so!

○ Bob verifies all the proofs and computes Q = b * A
○ Alice computes Q = a * B
○ Output:

■ Alice saves 2P-ECDSA private key (a, PSK) with public key Q = ab*G
■ Bob saves 2P-ECDSA private key (b, c, PPK) with public key Q = ab*G

● Sooo why all this Paillier nonsense?
○ Can’t “add” signatures and pubkeys as we can with Schnorr
○ Paillier ciphertexts exhibit partially-homomorphic properties

■ Additive: D(E(m1) * E(m2) mod N^2) = m1 + m2 mod N
■ Scalar-multiplicative: D(E(m)^k mod N^2) = k*m mod N
■ Both can be done without private knowledge

● ECDSA signature: (R, s) where s = k-1 * (H(m) + r * x) and r = x-coord(R = k*G)

● Sign:
○ Alice and Bob exchanges nonces w/ discrete log PoK, Ka = ka*G and Kb = kb*G
○ Bob encrypts c1 = EncPPK (kb

-1 * H(m)) and v = kb
-1 * r * b where r = x-coord(R = ka

-1kb -1 * G)
○ Bob computes and sends c’ = c1 * c^v mod N^2 = EncPPK (kb -1 * (H(m) + r * a * b)) to Alice
○ Alice s’ = DecPSK (c’) and computes s’’ = ka

-1 * s’ mod q
○ Sure enough, s’’ = ka

-1 * kb -1 * (H(m) + r * a * b)
○ Finally, Alice sets s = min(s’’, q - s’’ mod q) and outputs signature (R, s)

Setup:
● 2.8 GHz Intel Core i7 16 GB 2133 MHz LPDDR3
● Single process, no network latency or serialization
● Non-interactive DLOG PoK and Proof of Paillier Paillier Key Correctness
● Interactive Paillier Range and DLog Ciphertext Proof

Golang code will be published here: https://github.com/cfromknecht/tpec (1.7K LOC)
Concurrent work in Rust by Gary Bennatar and Omer Shlomovits: https://github.com/KZen-networks/multi-party-ecdsa

● Also working on t-of-n threshold ECDSA signing!

[1] Likely to change after further refinement and optimization

Time Memory Allocated Num Allocations Num Messages

KeyGen[1] 1.07 s 4.99 MB 13.31 K 7

Sign 28.66 ms 97 KB 746 4

Scriptless-Sign 29.40 ms 118 KB 1.12 K 5+1

https://github.com/cfromknecht/tpec
https://github.com/KZen-networks/multi-party-ecdsa

● 2P-ECDSA/Schnorr
○ Funding Outputs

■ Currently regular 2-of-2 multisigs
■ Requires 2-of-2 signature to spend

● Cooperative closes
● Commitment transactions

■ Replaced with P2WKH-looking output
○ HTLC Outputs

■ Uses 2-of-2 multisig in non-standard HTLC scripts
■ Two types of HTLC scripts: offered and received
■ Requires 2-of-2 sig to spend offered-timeout and received-success clauses
■ Replaced with much simpler HTLC script

● Scriptless 2P-ECDSA/Schnorr
○ HTLC Outputs

■ Remove payment hashes from HTLC scripts!
■ By extension, remove preimages from witnesses

Witness Witness Script

Regular 2-of-2 MultiSig
OP_0 <a*G sig> <b*G

sig>
OP_2 <a*G pubkey> <b*G pubkey> OP_2 OP_CHECKMULTISIG

Schnorr 2-of-2 MultiSig <(a+b)*G sig> <(a+b)*G pubkey> OP_CHECK_SCHNORR_SIG

2P-ECDSA 2-of-2 MultiSig <ab*G sig> <ab*G pubkey> OP_CHECKSIG

P2WKH <a*G sig> <a*G pubkey> OP_CHECKSIG

● Witness bytes required to spend:
○ Regular 2-of-2: ~220
○ 2P-ECDSA and P2WKH: ~109
○ Schnorr: 100

● 2P-ECDSA is indistinguishable from P2WKH, increased anonymity set
○ Huge win for non-advertised channels

OP_IF
 # revocation clause
 revocationpubkey
OP_ELSE
 OP_IF
 # timeout clause
 <cltv_expiry> OP_CLTV OP_DROP
 <remote_delay_pubkey>
 OP_ELSE
 # success clause
 <2p_htlc_pubkey>
 OP_ENDIF
OP_ENDIF
OP_CHECKSIG

revocation clause
OP_DUP OP_HASH160
<RIPEMD160(SHA256(revocationpubkey))> OP_EQUAL
OP_IF
 OP_CHECKSIG
OP_ELSE
 <remote_htlcpubkey> OP_SWAP OP_SIZE 32 OP_EQUAL
 OP_IF
 # success clause
 OP_HASH160 <RIPEMD160(payment_hash)>
OP_EQUALVERIFY
 2 OP_SWAP <local_htlcpubkey> 2 OP_CHECKMULTISIG
 OP_ELSE
 # timeout clause
 OP_DROP <cltv_expiry> OP_CLTV OP_DROP
 OP_CHECKSIG
 OP_ENDIF
OP_ENDIF

● 20% reduction in witness script size
● Improves readability immeasurably
● Reduced witness size

○ 78% for success witness
○ 30% for revocation witness
○ Timeout witness stays the same

New Received-HTLC Witness Script Current Received-HTLC Witness Script

Funding Output

HTLC Output A

HTLC Output B Timeout/Success

Timeout/Success

2 2P-ECDSA
Instances w/
Same Key Q

2 2P-ECDSA
Instances w/

Diff Keys

On-Chain Tx Commitment Tx HTLC Tx

Current per-hop payload (32 bytes)
[8:short_channel_id]

[8:amt_to_forward]

[4:outgoing_cltv_value]

[12:padding]

Total: 1300 bytes

MHL per-hop payload (161 bytes)
[8:short_channel_id]

[8:amt_to_forward]

[4:outgoing_cltv_value]

[33:incoming_lock_pubkey]

[64:incoming_lock_dlog_pok

[32:hop_lock_secret]

[12:padding]

Total: 3880 bytes

1:realm x:per-hop 32:MAC 19*(33+x):filler

● Performance is dominated by asymmetric operations
○ Used to derive per-hop ephemeral keys and blinding factors
○ But, scales linearly in the number of hops!

● Increased message size likely have marginal impact on construction/decryption

BOLT 04 Onion Packet Structure

