@ERGO ‘mff

SELF-REPRODUCING COINS
AS UNIVERSAL TURING MACHINE

OVERVIEW

= The paper is online: https://arxiv.org/abs/1806.10116

https://arxiv.org/abs/1806.10116

OVERVIEW

= The paper is online: https://arxiv.org/abs/1806.10116

= The very general question: how can we do more with less?

https://arxiv.org/abs/1806.10116

QUESTIONS

= Can we achieve Turing completeness without jump (or equivalent) opcode?

QUESTIONS

= Can we achieve Turing completeness without jump (or equivalent) opcode?

= Can we do it in UTXO model?

QUESTIONS

= Can we achieve Turing completeness without jump (or equivalent) opcode?
= Can we do it in UTXO model?

= |f so, what is the practical use of it?

OUTLINE

= TURING COMPLETENESS IN BLOCKCHAIN ENVIRONMENT

= SCRIPTING LANGUAGE PREREQUISITES, UTX0'S, ERGO

= GENERAL CONSTRUCTION + PROOF OF TURING COMPLETENESS
= PRACTICAL CASES

= CONCLUSIONS

TURING COMPLETENESS AND BLOCKCHAIN

= A system is Turing complete if it can emulate universal Turing machine

TURING COMPLETENESS AND BLOCKCHAIN

= A system is Turing complete if it can emulate universal Turing machine

= Blockchain requires constant block validation time

TURING COMPLETENESS AND BLOCKCHAIN

= A system is Turing complete if it can emulate universal Turing machine
= Blockchain requires constant block validation time

= There is a popular tenet in the folklore that if one needs Turing completeness on blockchain, jump, while, or
recursion must be present on the script level

= There is a popular tenet in the folklore that if one needs Turing completeness on blockchain, jump, while, or
recursion must be present on the script level

TURING COMPLETENESS AND BLOCKCHAIN

= A system is Turing complete if it can emulate universal Turing machine
= Blockchain requires constant block validation time

= There is a popular tenet in the folklore that if one needs Turing completeness on blockchain, jump, while, or
recursion must be present on the script level

= There is a popular tenet in the folklore that if one needs Turing completeness on blockchain, jump, while, or
recursion must be present on the script level

= But imagine Ethereum® where there is gas limit per block, and all the state changes are reversed after transaction
script execution (and payment amount is not dependent on the program). Then the Ethereum® is not
Turing-complete.

BITCOIN®: BOXES, REGISTERS, SCRIPTING

TX

e E—
.............. B 0 T
o
........................... Boxl H—s
e
Box2 [1—
e

BITCOIN®: BOXES, REGISTERS, SCRIPTING

TX

e E—
.............. B 0 T
o
........................... Boxl H—s
e
Box2 [1—
e

BITCOIN®: BOXES, REGISTERS, SCRIPTING

.............. . VrX

Box
Ry | Monetary value

Ry

Guarding Script

Ry | General Purpose

General purpose

BITCOIN®: BOXES, REGISTERS, SCRIPTING

Box

.............. . VrX

Monetary value

Guarding Script

General Purpose
General purpose

BITCOIN®: BOXES, REGISTERS, SCRIPTING

SCRIPTING LANGUAGE

TX
s 5 Box

Monetary value
Box0 [1—

Guarding Script

Boxl H— General Purpose

Box2 H— General purpose

BITCOIN®: BOXES, REGISTERS, SCRIPTING

SCRIPTING LANGUAGE

TX = Basic arithmetics
s . Box

Monetary value
Box0 [1—

Guarding Script

Boxl H— General Purpose

Box2 H— General purpose

BITCOIN®: BOXES, REGISTERS, SCRIPTING

SCRIPTING LANGUAGE

TX = Basic arithmetics
s 5 Box

Monetary value
Box0 [1—

= |f-then-else clause

Guarding Script

Boxl H— General Purpose

Box2 H— General purpose

BITCOIN®: BOXES, REGISTERS, SCRIPTING

TX

Box0 [1—

Boxl —1—

Box2 [1—

Box

Monetary value

Guarding Script

General Purpose
General purpose

SCRIPTING LANGUAGE
= Basic arithmetics
= |f-then-else clause

= Cryptographic primitives

BITCOIN®: BOXES, REGISTERS, SCRIPTING

SCRIPTING LANGUAGE

TX = Basic arithmetics
s 5 Box

= |f-then-else clause
Monetary value . Lo
Box0 H— = Cryptographic primitives
Guarding Script = Array declaration (predefined size) and
access operations
E Boxl H—s General Purpose
T []
Box2 H— General purpose

BITCOIN®: BOXES, REGISTERS, SCRIPTING

SCRIPTING LANGUAGE
TX = Basic arithmetics
Box
= |f-then-else clause
Box0 H— = Cryptographic primitives

Guarding Script = Array declaration (predefined size) and

.R G access operations
0X ——> 2 eneral Purpose
303

= Context data

Box2 H— General purpose = SELF: Box

= INPUTS: Array[Box]

= OUTPUTS: Array[Box]

BITCOIN®: BOXES, REGISTERS, SCRIPTING

SCRIPTING LANGUAGE
TX = Basic arithmetics
Box
= |f-then-else clause
Box0 H— = Cryptographic primitives

Guarding Script = Array declaration (predefined size) and

.R G access operations
0X ——> 2 eneral Purpose
303

= Context data

Box2 H— General purpose = SELF: Box

= [NPUTS: Array[Box]

= OUTPUTS: Array[Box]

RULE 110 CELLULAR AUTOMATON

Turing completeness can be demonstrated by simulating a
simple Turing complete system.

Cook, M.: Universality in elementary cellular automata
(https://git.io/vj6sw)

https://git.io/vj6sw)

RULE 110 CELLULAR AUTOMATON

Turing completeness can be demonstrated by simulating a
simple Turing complete system.

et -

Cook, M.: Universality in elementary cellular automata
(https://git.io/vj6sw)

https://git.io/vj6sw)

RULE 110 CELLULAR AUTOMATON

Turing completeness can be demonstrated by simulating a
simple Turing complete system.

et -

Cook, M.: Universality in elementary cellular automata
(https://git.io/vj6sw)

X=4{4-C-T+C-r+c+r mod 2

https://git.io/vj6sw)

RULE 110 CELLULAR AUTOMATON

Turing completeness can be demonstrated by simulating a
simple Turing complete system.

et -

Cook, M.: Universality in elementary cellular automata
(https://git.io/vj6sw)

X=4{4-C-T+C-r+c+r mod 2

let indices:

let inLayer:

Array[Int]=Array(0, 1, 2, 3, 4, 5)
Array[Byte]=SELF.R3[Array[Bytel].value

fun procCell(i: Int): Byte = {

let 1 =
let ¢ =
let r =
(@ *c
}
(OUTPUTS (0)

inLayer ((if (i==0) 5 else (i-1)))
inLayer (i)
inLayer((i + 1) 7% 6)

*r +cxr+c+r)d 2).toByte

.R3[Array[Bytel].value==

indices.map(procCell)) &&

(OUTPUTS(0) .R1 == SELF.R1)

https://git.io/vj6sw)

RULE 110 CELLULAR AUTOMATON

Turing completeness can be demonstrated by simulating a

simple Turing complete system.
P 9 P 4 X=4{4-C-T+C-r+c+r mod 2

EEF‘ E;. l:l:‘ Er .a:‘ .;. 1:‘ ? let indices: Array[Int]=Array(0, 1, 2, 3, 4, 5)

let inLayer: Array[Byte]l=SELF.R3[Array[Bytell.value

Transaction 1 fun procCell(i: Int): Byte = {
e let 1 = inLayer((if(i==0) 5 else (i-1)))

Output[0]

let ¢ = inLayer(i)
. - N I let r = inLayer((i + 1) 7% 6)
] (@ *c*r+c*xr+c+rx)i 2).toByte
[TT1

}
(OUTPUTS (0) .R3[Array [Bytel] .value==

Transaction 3

indices.map(procCell)) &&

Output[0] ’
: [T 1 W] 4 (OUTPUTS (0) .R1 == SELF.R1)

Cook, M.: Universality in elementary cellular automata

(https://git.io/vj6sw)

https://git.io/vj6sw)

RULE 110 CELLULAR AUTOMATON

Turing completeness can be demonstrated by simulating a

simple Turing complete system.
P 9 P 4 X=4{4-C-T+C-r+c+r mod 2

EEF‘ E;. l:l:‘ Er .a:‘ .;. 1:‘ ? let indices: Array[Int]=Array(0, 1, 2, 3, 4, 5)

let inLayer: Array[Byte]l=SELF.R3[Array[Bytell.value

Transaction 1 fun procCell(i: Int): Byte = {
e let 1 = inLayer((if(i==0) 5 else (i-1)))

Output[0]

let ¢ = inLayer(i)
. - N I let r = inLayer((i + 1) 7% 6)
] (@ *c*r+c*xr+c+rx)i 2).toByte
[TT1

}
(OUTPUTS (0) .R3[Array [Bytel] .value==

Transaction 3

indices.map(procCell)) &&

Output[0] ’
: [T 1 W] 4 (OUTPUTS (0) .R1 == SELF.R1)

We just allowed recursive calls by granting the script
access to an output.

Cook, M.: Universality in elementary cellular automata
(https://git.io/vj6sw)

https://git.io/vj6sw)

RULE 110 CELLULAR AUTOMATON: INFINITE TAPE

Use transaction chaining to share memory between the transactions

https://git.io/vj6rX

EXAMPLES

= Crowdfunding
= Demurrage currency
= Oracles (w. authenticated state)

= Decentralized exchanges

https://github.com/ergoplatform/ergo/blob/master/papers/yellow

https://github.com/ergoplatform/ergo/blob/master/papers/yellow

PRACTICAL CASE: ERGO TOKEN EMISSION

let epoch = 1 + (HEIGHT-fixedRatePeriod)/epochLength
let out = OUTPUTS(0)
let coinsToIssue = if (HEIGHT < fixedRatePeriod) fixedRate

else fixedRate - oneEpochReduction*epoch

0 2 4 6 8

time. vears let correctCoinsConsumed = coinsToIssue==(SELF.value - out.value)

let sameScriptRule = SELF.propositionBytes==out.propositionBytes
10X10° let heightIncreased = HEIGHT>SELF.R3[Long].value
let heightCorrect = out.R3[Long]l.value==HEIGHT

let lastCoins = SELF.value<=oneEpochReduction

(correctCoinsConsumed && heightCorrect && heightIncreased &&

— sameScriptRule) || (heightIncreased &% lastCoins)

https://github.com/ergoplatform/ergo/blob/master/papers/yellow

0 2 4 6 8
time, years

https://github.com/ergoplatform/ergo/blob/master/papers/yellow

CONCLUSIONS

Turing Completeness of the blockchain system can be achieved by unwinding the recursive calls between the
transactions. It fully complies with the blockchain requirements, and does not require ad-hoc structures to bypass
the halting problem

We provide the explicit proof of the Turing completeness of Ergo blockchain scripting system. To our knowledge,
this is the first proof of that kind

The construction is explicit, and the functionality is fully implemented

Self-reproducing coins allow one to make practical constructions. As an example, significant fraction of the
validation rules can be brought from the hard-coded form to the scripting layer. Moreover, the logic of arbitrary
complexity can be potentially implemented

THANK YOU FOR YOUR ATTENTION

	Thank you for your attention

