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= |f so, what is the practical use of it?
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= There is a popular tenet in the folklore that if one needs Turing completeness on blockchain, jump, while, or
recursion must be present on the script level

= But imagine Ethereum® where there is gas limit per block, and all the state changes are reversed after transaction
script execution (and payment amount is not dependent on the program). Then the Ethereum® is not
Turing-complete.
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Transaction 3

indices.map(procCell)) &&

Output[0] ’
: [T 1 W] 4 (OUTPUTS (0) .R1 == SELF.R1)

We just allowed recursive calls by granting the script
access to an output.

Cook, M.: Universality in elementary cellular automata
(https://git.io/vj6sw)
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RULE 110 CELLULAR AUTOMATON: INFINITE TAPE

Use transaction chaining to share memory between the transactions

https://git.io/vj6rX
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= Crowdfunding
= Demurrage currency
= Oracles (w. authenticated state)

= Decentralized exchanges
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PRACTICAL CASE: ERGO TOKEN EMISSION

let epoch = 1 + (HEIGHT-fixedRatePeriod)/epochLength
let out = OUTPUTS(0)
let coinsToIssue = if (HEIGHT < fixedRatePeriod) fixedRate

else fixedRate - oneEpochReduction*epoch

0 2 4 6 8

time. vears let correctCoinsConsumed = coinsToIssue==(SELF.value - out.value)

let sameScriptRule = SELF.propositionBytes==out.propositionBytes
10X10° let heightIncreased = HEIGHT>SELF.R3[Long].value
let heightCorrect = out.R3[Long]l.value==HEIGHT

let lastCoins = SELF.value<=oneEpochReduction

(correctCoinsConsumed && heightCorrect && heightIncreased &&

— sameScriptRule) || (heightIncreased &% lastCoins)

https://github.com/ergoplatform/ergo/blob/master/papers/yellow

0 2 4 6 8
time, years
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CONCLUSIONS

Turing Completeness of the blockchain system can be achieved by unwinding the recursive calls between the
transactions. It fully complies with the blockchain requirements, and does not require ad-hoc structures to bypass
the halting problem

We provide the explicit proof of the Turing completeness of Ergo blockchain scripting system. To our knowledge,
this is the first proof of that kind

The construction is explicit, and the functionality is fully implemented

Self-reproducing coins allow one to make practical constructions. As an example, significant fraction of the
validation rules can be brought from the hard-coded form to the scripting layer. Moreover, the logic of arbitrary
complexity can be potentially implemented
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