THE GHOST-DAG PROTOCOL

Yonatan Sompolinsky¹ & Aviv Zohar²

The Hebrew University^{1,2}, DAGlabs¹, QED-it²

Bitcoin's consensus protocol:

Behavior of honest miners:

- Mine blocks that point to tip of longest chain
- 2. Publish blocks immediately

Security assumptions:

- >50% of hashrate honest.
- 2. Block prop. << time between blocks

Then:

- 1. Pick the longest chain
- The transaction set does not change (w.h.p. for txs with many confirmations)

What you get

 Security no longer breaks at higher throughput

BUT NO FREE LUNCH!

- Latency increases (Time until transactions are irreversible).
- (We also don't solve other scaling issues like storage, validation time, bootstrapping, etc.)

From Chain to DAG

Goal: To get an ordering of the blocks that does not change

Terminology

What do "honest" blocks look like?

- \odot Suppose blocks B_1 , B_2 are "honest"
 - $B_1 \in Anticone(B_2)$ only if created roughly at the same time

k-cluster (sometimes also called k-chain)

•

• A set of blocks C such that each block $B \in C$ has $|Anticone(B) \cap C| \le k$

Example

K-Cluster

0-Cluster

The PHANTOM protocol:

- 1) Pick a max weight k-cluster in the DAG.
- 2) Sort it topologically in some canonical way*

*(that is past-dependent only).

It will contain most honest blocks (if k was set well)

It will remain the same, thus the topological sort will not change (w.h.p).

Problem: It is generally hard (NP-Hard) to find the maximal k-cluster in a DAG.

Solution: use a greedy algorithm to get a k-cluster

- Each block inherits the "heaviest" k-cluster from one of its predecessors.
- Adds blocks greedily (as long as still a k-cluster)

- Each block inherits the "heaviest" k-cluster from one of its predecessors.
- Adds blocks greedily (as long as still a k-cluster)

- Each block inherits the "heaviest" k-cluster from on of its predecessors.
- Adds blocks greedily (as long as still a k-cluster)

- Each block inherits the "heaviest" k-cluster from on of its predecessors.
- Adds blocks greedily (as long as still a k-cluster)

- Each block inherits the "heaviest" k-cluster from on of its predecessors.
- Adds blocks greedily (as long as still a k-cluster)

Intuition for resilience to double spends

Intuition for resilience to double spends

Comments

 Extra data-structures allow for very efficient implementation

 Topological order can also be "inherited" from "heaviest" predecessor

All k-clutser blocks get block reward:
Extra resilience to selfish mining

- Selfish mining: "push" honest blocks off the chain by strategically delaying block publication.
- To push blocks off largest k-cluster requires longer delays
 - Attacker more likely to lose block races

Thank you!

PHANTOM & GHOSTDAG full paper: https://eprint.iacr.org/2018/104.pdf

Email:

avivz@cs.huji.ac.il yoni_sompo@cs.huji.ac.il