A Unicorn Walks Into A Bar...
Or…. Accumulators for UTXOs

Benedikt Bünz

Joint work with:

Ben Fisch and Dan Boneh
(Formerly BPASE)
Conference: Jan. 30 - Feb 1, 2019. (three days)
Only technical submissions
Submission: October 16th, 2018
https://cyber.stanford.edu/sbc19
Videos: https://tinyurl.com/bpasevideos
Part of the Stanford Center for Blockchain Research (@CBRStanford)
UTXO Set: A Growing Problem
UTXOs

Look up TXO from head:
O(n) block headers (O(log(n) with Flyclient)

Look up UTXO: All transactions
Consensus ensures: All UTXO committed here
Merkle Trees

Inclusion: $O(\log(n))$

Exclusion: $O(\log(n))$\(^1\)

Update: $O(\log(n))$

\(^1\) If sorted
Stateless Full Nodes/Mining

prev: H()
trans: H()
utxos: H()

prev: H()
trans: H()
utxos: H()

prev: H()
trans: H()
utxos: H()

TX:
Spend UTXO 426
Proof: π

Looks good
Problems with Merkle Trees

- Log(n) inclusion proof per transaction
- Inclusion proofs can hardly be aggregated
 - 600 GB naively
 - 160 GB with many optimizations
- Verification not that cheap
 - Full node sync too slow
 - Proposed for only old transactions
Setup:
- Choose $N = pq$ where p, q are secret primes
- H: Hash function to primes in $[0, 2^λ]$
- $A_0 = g \in Z_N$ (initial state)

Add(A_i, x)
- $A_{i+1} = A_i^{H(x)}$

Del(A_i, x)
- $A_{i+1} = A_i^{1/H(x)}$

State after set S added:
- $u = \prod_{s \in S} s$
- $A_t = g^u$
Accumulator Proofs

InclusionProof(A, x):
• \(\pi = A^x \in \mathbb{G} \)
• Computed using \(\text{trapdoor}(p, q) \text{ Or } O(|S|) \)

Verify(A, x, \(\pi \))
• \(\pi^x = A \)

Exclusion(A, x)
• \(A = g^u \)
• \(a \cdot x + b \cdot u = \gcd(x, u) = 1 \)

Efficient stateless updates:
[LiLiXue07]
RSA = Trusted Setup?

N = p \times q, p, q unknown

Efficient delete needs trapdoor

You can find Ns in the wild (Ron Rivest Assumption)
Class Groups [BW88,L12]

\[\text{CL}(\Delta) - \text{Class group of quadratic number field } \mathbb{Q}(\sqrt{\Delta}) \]

\[\Delta = -p \text{ (a large random prime)} \]

Properties

- Element representation: integer pairs \((a, b)\)
 \[|a| \approx |b| \approx \sqrt{-\Delta} \]

- Tasks believed to be hard to compute:

 Odd prime roots Group order

- \(\Delta \approx 1536 \text{ bits } \Rightarrow 128 \text{ bit security} \)
RSA Accumulator State of Art

Positives
- **Constant** size inclusion proofs (≈ 3000 bits)

 Better than Merkle tree for set size > 4000
- **Dynamic** stateless adds (can add elements w/o knowing set)
- Decentralized storage (no need for full node storage)
 - Users maintain their own UTXOs and membership proofs

Room for improvement? This work
- Aggregate/batch inclusion proofs (many at cost of one)
- Stateless deletes
- Faster (batch) verification
Aggregate Inclusion Proofs

\[\pi_1^x = A, \pi_2^y = A \]

Shamir's Trick:
\[a \cdot x + b \cdot y = 1 \]
\[\pi_{1,2} = \pi_1^b \pi_2^a \]
\[\pi_{1,2}^x = A \]

All inclusion proofs per block: 1.5kb
All inclusion proofs ever: 160GB -> 1.5kb
Stateless Deletion

Delete with trapdoor \((A_t, x) \):
- \(A_{t+1} = A_t^x \)

Delete with inclusion proof \((A_t, x, \pi) \)
- \(A_{t+1} = \pi \)

BatchDelete \((A_t, x, y, \pi_1, \pi_2) \)
- Compute \(\pi_{1,2} \) s.t. \(\pi_{1,2}^{x \cdot y} = A_t \)
- \(A_{t+1} = \pi_{1,2} \)

Using knowledge of p, q

\(\pi = \frac{u}{g^x} \)

No State, no Trapdoor, asynchronous
Too slow?

- Openssl 2048 bit RSA:
 - 219 updates per second
 - Verification/Full sync would be problematic
- Class groups: No good benchmarks yet
Wesolowski Proof [Wesolowski’18]

Computation

Peggy

Computes
q, r s.t.
$2^T = q \cdot l + r$ and
$0 \leq r < l$

Victor

Random λ bit prime l

$(x, y, T): x^{2^T} = y$

$\pi = x^q$

Computes
$r = 2^T \mod l$

Checks:
$\pi^l x^r = y$
$x^{q \cdot l} x^r = x^{2^T}$
Proof of Exponentiation

\[(x, y, \alpha): x^\alpha = y\]

Computes

q, r s.t.

\[\alpha = q \cdot l + r \text{ and } 0 \leq r < l\]

Victor

Random \(\lambda\) bit prime \(l\)

Peggy

\[\pi = x^q\]

Computes

\[r = \alpha \mod l\]

Checks:

\[\pi^l x^r = y\]

\[x^{q \cdot l} x^r = x^\alpha\]
Proof of Exponentiation Efficiency

Direct Verification:

\(x^\alpha = y \in \mathbb{G} \)

PoE Verify:

\[r = \alpha \mod l \]

\[\pi^l g^r \]

Exponentiation in \(\mathbb{G} \) vs. 128 bit long-division:

5000x difference for 128 bit security
Fast Block Verification

Header:
- TXs: Spent s, new N
- BLS σ

$A_{t+\frac{1}{2}}, A_{t+1}, PoE$

Remove s

Add N

Verify σ

Verify $PoE(A^{\prod_{s \in S} s}_{t+\frac{1}{2}} = A_t)$

$PoE(A^{\prod_{n \in N} N}_{t+\frac{1}{2}} = A_{t+1})$
Performance

Macbook, Java BigInteger, JDK Hash

Merkle Tree: 26 x SHA-256:
8.5 μs

Add: \(g^x \mod N \), \(|x|=256\) bit \(|N|=3072\):
1535 μs

Verify: \(x \mod l \), \(|x|=256\) bit \(|l|=128\) bit
0.3 μs
Vector Commitments

\[VC = \text{Commit}(a_1, a_2, a_3, \ldots, a_n) \]

\[\pi = \text{Open}(VC, a_i, i) \]

\[\text{Verify}(VC, \pi, a_i, i) = \{0, 1\} \]

Merkle trees are VCs not just accums!

Classical VCs: Verifier requires GBs of memory

New VCs: Zero-memory
Short IOPs (STARKs etc.)

\[MT = \text{Commit} \left(\ldots \right) \]

\[\pi_{i_1}, \ldots, \pi_{i_\lambda} \text{ and Merkle Paths} \]
Short IOPs (STARKs etc.)

VC = Commit(Long Proof)

\[i_1, \ldots, i_\lambda \]

\[\pi_{i_1}, \ldots, \pi_{i_\lambda} \] and 1 VC Opening

200kb vs. 600kb
A Unicorn Walks Into A Bar...

Accumulators, Unions, Wesolowski, IOPs, Aggregation and Blockchains
References

- CL02: Camenisch Lysanskaya 2002 Dynamic Accumulators
- LiLiXue07: Li, Li, Xue 2007 Universal Accumulators
- CF: Catalone Fiore: Vector Commitments
- Todd: https://petertodd.org/2016/delayed-txo-commitments#further-work
- MMR: https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
- UTXO: https://bitcointalk.org/index.php?topic=101734.0
- BW88: Buchmann and Williams