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Single Party Chans - Overview

● Emulate a shared account using a 2-of-2 multi-sig 
● On-chain control transactions: 

○ Open
○ Cooperative close
○ Force close
○ Splice-In/Splice-Out

● Rapid off-chain balance updates
● Atomic conditional payments via HTLCs

○ Hash Time Locked Contracts 
● Bridging channels via HTLCs

○ Starts to get more network-y
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Single Party Chans - Limitations

● Flow of funds constrained by topology of 
channels 
○ Requires planned bootstrapping effort 

for swift onboarding experience 
(autopilot) 

● Unable to dynamically create new channels 
off-chain
○ Each new user on-boarded to LN requires 

on-chain txn (ignoring custodial wallets) 
● Each channel requires a single UTXO 

○ Can only be so many UTXOs in the 
system…
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Multi-Party Channels - Opportunities

● Generalization of two-party contracts to multi-party 
contracts
○ Extends payment ability to allow n-to-n interaction

● No longer need a new utxo for each channel 
○ Single UTXO potentially creates 1000s of channels
○ multi-signature techniques, can make funding 

transactions appear as multi-input sweeps!
● Able to collocate into “economic zones” 

○ Frequently transacting parties Likely save on 
networkwork level forwarding fees

○ Off-chain channel creation/destruction 
● Dynamic route creation in the Lightning Network  

○ Able to dynamically “tunnel” payments 
● Applications: 

○ MMO gaming Servers 
○ P2P payment focused applications 
○ Bill-splitting, etc
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Multi-Party Channels - UTXOs vs Accounts

● Most existing constructions in the account model:
○ Single contract with “virtual” accounts within the contract
○ Existing constructions/deployments 

■ Plasma 
● Hierarchical side chains with exit clauses, root chain stamped 

in main chain
■ NOCUST 

● Creates “bi-modal” accounts on-chain and off-chain 
● Challenges in UTXO model 

○ Lack of state in contracts seems to force hierarchical constructions 
○ Hierarchical constructions can have large on chain footprint
○ Limited scripting restricts range of challenge proofs  

● Advantages of UTXO model
○ Able to easily create new contracts off-chain 

■ No need to “counterfactual instantiation” or w/e 
○ Hierarchical states allow flexibility + decoupled updates 
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UTXO Based Multi-Party Channels - Lineage 

● Duplex channels
○ Nested commitment replacement by relative lock-time 

■ Invalidation tree recursively applies relative-lock time to achieve 
longer channel lifetime

○ Addition of kick-off transactions later allowed for indefinite channel 
lifetime 

● Eltoo (or signed sequence locks!)
○ Commitment replacement by version 
○ Addresses on-chain state blowup issue due to usage of invalidation trees

● Channel Factories
○ Framework for hierarchical multi-party channels 
○ Originally used invalidation-trees for n-party commitments 
○ Addition of eltoo reduces already large on-chain footprint in the worst case

● Lightning Factories
○ Recently published (like earlier this week) 
○ Applies replacement-by-revocation to a channel factory-like framework
○ Utilizes BLS signatures to reduce communication complexity 
○ Doesn’t appear to solve state blow up issues
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UTXO Based Multi-Party Channels - Channel Factories 

● Hierarchical n-party channel construction: 
○ Layers of intermediate transactions creating various sizes of 

mult-sigs
○ Further down tree (towards leaves) # of keys in sigs grows 

smaller (fan-out)
● Channel Factory Terminology 

○ Hook 
■ Initial n-of-n multi-sig funding transaction
■ Requires all parties to sign-off for updates 
■ Can utilize key-aggregation/multi-signatures to shrink 

to single key 
○ Allocation:

■ Sub-divides hook into smaller multi-sig subset 
■ Used to shape structure of relationships further down 

in tree
○ Commitment:

■ Leaf nodes of 2-party channels 
■ Usage of eltoo at leaves allows for n+ leaf chans

●
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UTXO Based Multi-Party Channels - Channel Factories 
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New Directions - New User Off-Chain Chan Creation 

● Able to join new channels without on-chain transactions
○ Partially addresses on-boarding problem of new users to LN 

■ “Alice has no Bitcoin, how do we get her onto Lightning without an 
on-chain transaction” 

○ Simply modify existing allocation to add key of new user
○ User then able to update channel in place, never touching chain!
○ Allows for dynamic growth of # of users in channel, UTXO growth 

contained!
● Requires new trust assumption 

○ Able to obtain valid channel audit proofs from threshold of active users 
in channel 

○ Need to ensure being “teleported” into latest valid state within channel 
○ As all updates off-chain can’t use raw chain to verify “freshness” of 

proposed state 
■ MP-Chans like icebergs, can only see hook, not below to 

allocation/commitments 
■ Similar to “weak subjectivity” assumption in PoS

● Can also splice in/out new funds/participants via sighash no_input
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New Directions - Threshold Channel Audit Proofs 

● Intra/inter multi-party channel operations, require “freshness” arguments of 
channel state 
○ Otherwise can sign away output or state to/from a channel that actually 

doesn’t exist!
○ Typically only have limited visibility into surrounding channel tree

● Audit proof: 
○ Introduce new modified sighash: single sha instead of double-sha
○ Require entities from leaf to root/hook to sign description of channel state 

■ Need enough information to be able to reconstruct txid of txns
○ Proof verifier specifies threshold of parties at each internal branch (n-of-n 

multi-sig)
● Required for: 

○ New user off-chain channel creation 
○ Cross sub-tree swap operations 
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Lightning Cross Over - Route Tunneling 

● The current LN graph is generally relatively static 
○ Channels take up to 6 confs before becoming routable by remote parties 
○ Channel closes can take 10 of minutes to execute 
○ Graph verified by nodes to prevent DoS/sybil attacks 

● Multi-party channels allow for dynamic channel creation, there for dynamic 
route creation! 
○ Channel relationships in mp-chans exist in “another dimension” 
○ Can be used by nodes “above ground” to advertise short cuts route that 

tunnel through channel formation
○ Able to create new channels in seconds to satisfy directional flow above 

above ground
● Requires distance-vector like announcements

○ In contrast to circuit-switching widely utilized today
○ Supplemented by proposals for balanced congestion aware packet 

switching within the network
● Can also be used as a bridge to multiple mp-chans 

○ Used recursively to dramatically reduce network diameter
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Lightning Cross Over - Multi-Party Nodes 

● Alternatively, can advertise mp-chan as single regular channel 
○ Series of smaller mp-chans linking either single chans or other mp-chans 
○ Channel “colony” addressed externally by single node public key

● Allows multiple nodes to aggregate channels and combine liquidity 
○ Shrinks the size of the public graph, 100s of channels seen as a single 

channel 
● Current protocol implements limit on # of outstanding HTLCs per channel 

○ Usage of AMP combined with a max HTLC size (essentially an MTU) 
results in constrained commitment space network-wide 
■ Limits set for single transaction penalty (966 HTLCs) can easily be 

raised to target max transaction weight policy limit
○ Mp-chans essentially allow queue size to grow dynamically via nested 

commitments!
■ Similar trick (indirect commitments) can be used for regular 

channels as well
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Lightning Cross Over - Hierarchical Prefix Addressing 

● How to handle receives over multi-node (network aggregated) mp-chan? 
○ Today HTLCs targeted at single destination public key 
○ Multi-node channels potentially contain hundreds of nodes

● Solution:
○ Individual parties within the mp-chan self-organize to assign address 

based on up-to-date structure of the commitment tree
○ Destination address within commitment tree placed in EOB (extra onion 

blob) 
○ Parsed from left-to-right respecting fan out of intermediate allocations 

to dispatch payment to proper leaf node: 
■ Ordering of keys in allocation sorted to allow deterministic parsing 
■ Example for 8 -> 4 -> 2 (x4) channel: 

● [10][1]
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Cross Channel Swaps via Swaptions 

● Possible to exchange positions within a particular channel, or even trade 
positions within distinct channels
○ Swap itself creates new channel state, no need to thread prior history 

● Vanilla atomic swaps have free option issues as single party can halt execution
● Atomic Swaption: 

○ Alice sells Bob the option to swap positions within same/distinct channel 
○ Regular atomic swaps use a single secret 
○ Atomic swaptions instead involve two distinct secrets 
○ Two layers of transactions: 

■ Acceptance layer: 
● Alice can accept by revealing secret A which leads to 

second-layer that unilaterally pays Bob the premium
■ Exercise layer: 

● Bob can exercise the option till expiration by revealing his 
secret B

● Potentially allows the sale/transfer of channels within distinct channels!
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Channel Orchestration Servers 

● Distributed version requires quadratic communication for re-allocations 
scaling with number of participants in internal node 
○ Shifting to single-key n-of-n (schnorr) requires additional round trips for 

each signature 
● Can use a message passing server to reduce to linear communication 

between parties 
○ Channel participants use server as rendezvous location over Tor onion 

services
○ Leaks timing information of updates, but server doesn’t necessarily know 

which channels are being updated
■ Participants can send/receive dummy messages mix-net style
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Channel Orchestration Servers - Offline Payment Receipt

● Why not also use orchestration server as offline mailbox? 
○ Participants pay orchestrator to deliver message with set deadline
○ Allows for quasi-offline payment sending/receipt 
○ During clearing phase (HTLC add), if participants not offline within 

threshold, cancel back 
○ During settle phase, fully async as receiver only comes online to reveal 

secret 
● Similar model possible over “regular” network, but would need to pre-pay to 

several parties to compensate for longer HTLC lifetime
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Open Problems

● Cut-thru to reduce on-chain footprint in mass exit case? 
● Usage of covenants to allow hook transaction 

modifications w/o all parties involved? 
● Health checking protocol to splice out inactive parties 

within allocations 
● Language for expressing complex multi-step 

re-allocations and swaps? 
○ BitML?

● Efficient execution of fees+timelocks in 
packet-switched model?

https://eprint.iacr.org/2018/398.pdf


Thank You!
Questions?


