Multi-Party Channels in
the UTXO Model

Challenges and Opportunities

Laolu Osuntokun

@roasbeef
Co-Founder & CTO, Lightning Labs

Table of Contents

V.

Single-Party Chans + The Promise of Multi-Party Chans (MPC)
UTXO Model vs Account Model for MP-Chans

Existing Constructions for UTXO-based MP-Chans

New Directions in MP-Chans

Open Problems in MP-Chan Construction

Single Party Chans - Overview

Blockchain
e Emulate a shared account using a 2-of-2 multi-sig
e On-chain control transactions:

o Open A

o Cooperative close

o Force close

o Splice-In/Splice-Out

e Rapid off-chain balance updates v
e Atomic conditional payments via HTLCs e
o Hash Time Locked Contracts 2-0f-2 Multisig

e Bridging channels via HTLCs
o Starts to get more network-y |

\{ \4

Alice: 1 BTC Bob: 1 BTC

Flow of funds constrained by topology of
channels
o Requires planned bootstrapping effort
for swift onboarding experience
(autopilot)
Unable to dynamically create new channels
off-chain
o Each new user on-boarded to LN requires
on-chain txn (ignoring custodial wallets)
Each channel requires a single UTXO
o Canonly besomany UTXOs in the
system...

Blockchain

\4

2-0f-2 Multisig

Single Party Chans - Limitations

\4

v

Alice:

1 .BTC Bob:

1 BTC

Multi-Party Channels - Opportunities

e Generalization of two-party contracts to multi-party
contracts
o Extends payment ability to allow n-to-n interaction
e No longer need a new utxo for each channel
o Single UTXO potentially creates 1000s of channels
o multi-signature techniques, can make funding
transactions appear as multi-input sweeps!
e Able to collocate into “economic zones” g
o Frequently transacting parties Likely save on
networkwork level forwarding fees v
o OFf-chain channel creation/destruction [4-of-a muttisig |
e Dynamic route creation in the Lightning Network
o Able to dynamically “tunnel” payments
e Applications:
o MMO gaming Servers v v v v
o P2P payment focused applications Atice: 1 87| | Bob: 1BTC | |carol: 1 BTC| [Rodrigo: 1 BTC |
o Bill-splitting, etc

Blockchain

Multi-Party Channels - UTXOs vs Accounts

e Most existing constructions in the account model:
o Single contract with “virtual” accounts within the contract
o Existing constructions/deployments

m Plasma
e Hierarchical side chains with exit clauses, root chain stamped
in main chain
m NOCUST

e (reates "bi-modal” accounts on-chain and off-chain
e Challenges in UTXO model
o Lack of state in contracts seems to force hierarchical constructions
o Hierarchical constructions can have large on chain Footprint
o Limited scripting restricts range of challenge proofs
e Advantages of UTXO model
o Able to easily create new contracts off-chain
m No need to “counterfactual instantiation” or w/e
o Hierarchical states allow Flexibility + decoupled updates

UTXO Based Multi-Party Channels - Lineage

e Duplex channels

o Nested commitment replacement by relative lock-time

m Invalidation tree recursively applies relative-lock time to achieve
longer channel lifetime
o Addition of kick-off transactions later allowed for indefinite channel
lifetime

e Eltoo (or signed sequence locks!)

o Commitment replacement by version

o Addresses on-chain state blowup issue due to usage of invalidation trees
e Channel Factories

o Framework for hierarchical multi-party channels

o Originally used invalidation-trees for n-party commitments

o Addition of eltoo reduces already large on-chain footprint in the worst case
e Lightning Factories

o Recently published (like earlier this week)

o Applies replacement-by-revocation to a channel factory-like framework
o Utilizes BLS signatures to reduce communication complexity

o Doesn’t appear to solve state blow up issues

UTXO Based Multi-Party Channels - Channel Factories

e Hierarchical n-party channel construction:
o Layers of intermediate transactions creating various sizes of
mult-sigs
o Further down tree (towards leaves) # of keys in sigs grows
smaller (Fan-out)
e Channel Factory Terminology
o Hook
m Initial n-of-n multi-sig funding transaction
m Requires all parties to sign-off for updates
m Canutilize key-aggregation/multi-signatures to shrink
to single key
o Allocation:
m Sub-divides hook into smaller multi-sig subset
m Used to shape structure of relationships further down
in tree
o Commitment:
m Leaf nodes of 2-party channels
m Usage of eltoo at leaves allows for n+ leaf chans

UTXO Based Multi-Party Channels - Channel Factories

~Q)— _ 0
Q Commitment Q
O —R—| |0 f%
Q Hook @ Allocation Commitment

+®_, j@

Commitment C

9 N

N NV

Channel factory Subchannels

New Directions - New User Off-Chain Chan Creation

e Able tojoin new channels without on-chain transactions
o Partially addresses on-boarding problem of new users to LN
m “Alice has no Bitcoin, how do we get her onto Lightning without an
on-chain transaction”
o Simply modify existing allocation to add key of new user
o Userthen able to update channelin place, never touching chain!

o Allows for dynamic growth of # of users in channel, UTXO growth
contained!
e Requires new trust assumption
o Able to obtain valid channel audit proofs from threshold of active users
in channel
o Need to ensure being “teleported” into latest valid state within channel
o As all updates off-chain can’t use raw chain to verify “freshness” of
proposed state
m MP-Chans like icebergs, can only see hook, not below to
allocation/commitments
m Similar to “weak subjectivity” assumption in PoS
e Canalso splice infout new funds/participants via sighash no_input

New Directions - Threshold Channel Audit Proofs

e Intra/inter multi-party channel operations, require “freshness” arguments of
channel state
o Otherwise can sign away output or state to/from a channel that actually
doesn’t exist!
o Typically only have limited visibility into surrounding channel tree
e Audit proof:
o Introduce new modified sighash: single sha instead of double-sha
o Require entities from leaf to root/hook to sign description of channel state
m Need enough information to be able to reconstruct txid of txns
o Proof verifier specifies threshold of parties at each internal branch (n-of-n
multi-sig)
e Required for:
o New user off-chain channel creation
o Cross sub-tree swap operations

Lightning Cross Over - Route Tunneling

e The current LN graph is generally relatively static
o Channels take up to 6 confs before becoming routable by remote parties
o Channel closes can take 10 of minutes to execute
o Graph verified by nodes to prevent DoS/sybil attacks
e Multi-party channels allow for dynamic channel creation, there for dynamic
route creation!
o Channel relationships in mp-chans exist in “another dimension”
o Can be used by nodes “above ground” to advertise short cuts route that
tunnel through channel formation
o Able to create new channels in seconds to satisfy directional flow above
above ground
e Requires distance-vector like announcements
o In contrast to circuit-switching widely utilized today
o Supplemented by proposals for balanced congestion aware packet
switching within the network
e (Canalso be used as a bridge to multiple mp-chans
o Used recursively to dramatically reduce network diameter

Lightning Cross Over - Multi-Party Nodes

e Alternatively, can advertise mp-chan as single regular channel
o Series of smaller mp-chans linking either single chans or other mp-chans
o Channel “colony” addressed externally by single node public key
e Allows multiple nodes to aggregate channels and combine liquidity
o Shrinks the size of the public graph, 100s of channels seen as a single
channel
e Current protocolimplements limit on # of outstanding HTLCs per channel
o Usage of AMP combined with a max HTLC size (essentially an MTU)
results in constrained commitment space network-wide
m Limitsset for single transaction penalty (966 HTLCs) can easily be
raised to target max transaction weight policy limit
o Mp-chans essentially allow queue size to grow dynamically via nested
commitments!
m Similar trick (indirect commitments) can be used for regular
channels as well

Lightning Cross Over - Hierarchical Prefix Addressing

e How to handle receives over multi-node (network aggregated) mp-chan?
o Today HTLCs targeted at single destination public key
o Multi-node channels potentially contain hundreds of nodes
e Solution:
o Individual parties within the mp-chan self-organize to assign address
based on up-to-date structure of the commitment tree
o Destination address within commitment tree placed in EOB (extra onion
blob)
o Parsed from left-to-right respecting Fan out of intermediate allocations
to dispatch payment to proper leaf node:
m Ordering of keys in allocation sorted to allow deterministic parsing
m Example for 8 -> 4 -> 2 (x4) channel:
o [10][1]

Cross Channel Swaps via Swaptions

e Possible to exchange positions within a particular channel, or even trade
positions within distinct channels
o Swap itself creates new channel state, no need to thread prior history
e Vanilla atomic swaps have free option issues as single party can halt execution
e Atomic Swaption:
o Alice sells Bob the option to swap positions within same/distinct channel
o Regular atomic swaps use a single secret
o Atomic swaptions instead involve two distinct secrets
o Two layers of transactions:
m Acceptance layer:
e Alice can accept by revealing secret A which leads to
second-layer that unilaterally pays Bob the premium
m Exercise layer:
e Bob can exercise the option till expiration by revealing his
secret B
e Potentially allows the sale/transFer of channels within distinct channels!

Channel Orchestration Servers

e Distributed version requires quadratic communication for re-allocations
scaling with number of participants in internal node
o Shifting to single-key n-of-n (schnorr) requires additional round trips for
each signature
e Can use a message passing server to reduce to linear communication
between parties
o Channel participants use server as rendezvous location over Tor onion
services
o Leaks timing information of updates, but server doesn’t necessarily know
which channels are being updated
m Participants can send/receive dummy messages mix-net style

Channel Orchestration Servers - Offline Payment Receipt

e Why not also use orchestration server as offline mailbox?

(@)
(@)
(@)

O

Participants pay orchestrator to deliver message with set deadline
Allows for quasi-offline payment sending/receipt

During clearing phase (HTLC add), if participants not offline within
threshold, cancel back

During settle phase, fully async as receiver only comes online to reveal
secret

e Similar model possible over “regular” network, but would need to pre-pay to
several parties to compensate for longer HTLC lifetime

Open Problems

e Cut-thru to reduce on-chain footprint in mass exit case?

e Usage of covenants to allow hook transaction
modifications w/o all parties involved?

e Health checking protocol to splice out inactive parties
within allocations

e Language for expressing complex multi-step
re-allocations and swaps?

o BitML?

e Efficient execution of fees+timelocks in

packet-switched model?

https://eprint.iacr.org/2018/398.pdf

Thank You!

Questions?

