
Multi-Party Channels in
the UTXO Model
Challenges and Opportunities

Laolu Osuntokun

@roasbeef

Co-Founder & CTO, Lightning Labs

Table of Contents

I. Single-Party Chans + The Promise of Multi-Party Chans (MPC)

II. UTXO Model vs Account Model for MP-Chans

III. Existing Constructions for UTXO-based MP-Chans

IV. New Directions in MP-Chans

V. Open Problems in MP-Chan Construction

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

Single Party Chans - Overview

● Emulate a shared account using a 2-of-2 multi-sig
● On-chain control transactions:

○ Open
○ Cooperative close
○ Force close
○ Splice-In/Splice-Out

● Rapid off-chain balance updates
● Atomic conditional payments via HTLCs

○ Hash Time Locked Contracts
● Bridging channels via HTLCs

○ Starts to get more network-y

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

Single Party Chans - Limitations

● Flow of funds constrained by topology of
channels
○ Requires planned bootstrapping effort

for swift onboarding experience
(autopilot)

● Unable to dynamically create new channels
off-chain
○ Each new user on-boarded to LN requires

on-chain txn (ignoring custodial wallets)
● Each channel requires a single UTXO

○ Can only be so many UTXOs in the
system…

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

Multi-Party Channels - Opportunities

● Generalization of two-party contracts to multi-party
contracts
○ Extends payment ability to allow n-to-n interaction

● No longer need a new utxo for each channel
○ Single UTXO potentially creates 1000s of channels
○ multi-signature techniques, can make funding

transactions appear as multi-input sweeps!
● Able to collocate into “economic zones”

○ Frequently transacting parties Likely save on
networkwork level forwarding fees

○ Off-chain channel creation/destruction
● Dynamic route creation in the Lightning Network

○ Able to dynamically “tunnel” payments
● Applications:

○ MMO gaming Servers
○ P2P payment focused applications
○ Bill-splitting, etc

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

Multi-Party Channels - UTXOs vs Accounts

● Most existing constructions in the account model:
○ Single contract with “virtual” accounts within the contract
○ Existing constructions/deployments

■ Plasma
● Hierarchical side chains with exit clauses, root chain stamped

in main chain
■ NOCUST

● Creates “bi-modal” accounts on-chain and off-chain
● Challenges in UTXO model

○ Lack of state in contracts seems to force hierarchical constructions
○ Hierarchical constructions can have large on chain footprint
○ Limited scripting restricts range of challenge proofs

● Advantages of UTXO model
○ Able to easily create new contracts off-chain

■ No need to “counterfactual instantiation” or w/e
○ Hierarchical states allow flexibility + decoupled updates

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

UTXO Based Multi-Party Channels - Lineage

● Duplex channels
○ Nested commitment replacement by relative lock-time

■ Invalidation tree recursively applies relative-lock time to achieve
longer channel lifetime

○ Addition of kick-off transactions later allowed for indefinite channel
lifetime

● Eltoo (or signed sequence locks!)
○ Commitment replacement by version
○ Addresses on-chain state blowup issue due to usage of invalidation trees

● Channel Factories
○ Framework for hierarchical multi-party channels
○ Originally used invalidation-trees for n-party commitments
○ Addition of eltoo reduces already large on-chain footprint in the worst case

● Lightning Factories
○ Recently published (like earlier this week)
○ Applies replacement-by-revocation to a channel factory-like framework
○ Utilizes BLS signatures to reduce communication complexity
○ Doesn’t appear to solve state blow up issues

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

UTXO Based Multi-Party Channels - Channel Factories

● Hierarchical n-party channel construction:
○ Layers of intermediate transactions creating various sizes of

mult-sigs
○ Further down tree (towards leaves) # of keys in sigs grows

smaller (fan-out)
● Channel Factory Terminology

○ Hook
■ Initial n-of-n multi-sig funding transaction
■ Requires all parties to sign-off for updates
■ Can utilize key-aggregation/multi-signatures to shrink

to single key
○ Allocation:

■ Sub-divides hook into smaller multi-sig subset
■ Used to shape structure of relationships further down

in tree
○ Commitment:

■ Leaf nodes of 2-party channels
■ Usage of eltoo at leaves allows for n+ leaf chans

●

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

UTXO Based Multi-Party Channels - Channel Factories

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

New Directions - New User Off-Chain Chan Creation

● Able to join new channels without on-chain transactions
○ Partially addresses on-boarding problem of new users to LN

■ “Alice has no Bitcoin, how do we get her onto Lightning without an
on-chain transaction”

○ Simply modify existing allocation to add key of new user
○ User then able to update channel in place, never touching chain!
○ Allows for dynamic growth of # of users in channel, UTXO growth

contained!
● Requires new trust assumption

○ Able to obtain valid channel audit proofs from threshold of active users
in channel

○ Need to ensure being “teleported” into latest valid state within channel
○ As all updates off-chain can’t use raw chain to verify “freshness” of

proposed state
■ MP-Chans like icebergs, can only see hook, not below to

allocation/commitments
■ Similar to “weak subjectivity” assumption in PoS

● Can also splice in/out new funds/participants via sighash no_input

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

New Directions - Threshold Channel Audit Proofs

● Intra/inter multi-party channel operations, require “freshness” arguments of
channel state
○ Otherwise can sign away output or state to/from a channel that actually

doesn’t exist!
○ Typically only have limited visibility into surrounding channel tree

● Audit proof:
○ Introduce new modified sighash: single sha instead of double-sha
○ Require entities from leaf to root/hook to sign description of channel state

■ Need enough information to be able to reconstruct txid of txns
○ Proof verifier specifies threshold of parties at each internal branch (n-of-n

multi-sig)
● Required for:

○ New user off-chain channel creation
○ Cross sub-tree swap operations

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

Lightning Cross Over - Route Tunneling

● The current LN graph is generally relatively static
○ Channels take up to 6 confs before becoming routable by remote parties
○ Channel closes can take 10 of minutes to execute
○ Graph verified by nodes to prevent DoS/sybil attacks

● Multi-party channels allow for dynamic channel creation, there for dynamic
route creation!
○ Channel relationships in mp-chans exist in “another dimension”
○ Can be used by nodes “above ground” to advertise short cuts route that

tunnel through channel formation
○ Able to create new channels in seconds to satisfy directional flow above

above ground
● Requires distance-vector like announcements

○ In contrast to circuit-switching widely utilized today
○ Supplemented by proposals for balanced congestion aware packet

switching within the network
● Can also be used as a bridge to multiple mp-chans

○ Used recursively to dramatically reduce network diameter

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

Lightning Cross Over - Multi-Party Nodes

● Alternatively, can advertise mp-chan as single regular channel
○ Series of smaller mp-chans linking either single chans or other mp-chans
○ Channel “colony” addressed externally by single node public key

● Allows multiple nodes to aggregate channels and combine liquidity
○ Shrinks the size of the public graph, 100s of channels seen as a single

channel
● Current protocol implements limit on # of outstanding HTLCs per channel

○ Usage of AMP combined with a max HTLC size (essentially an MTU)
results in constrained commitment space network-wide
■ Limits set for single transaction penalty (966 HTLCs) can easily be

raised to target max transaction weight policy limit
○ Mp-chans essentially allow queue size to grow dynamically via nested

commitments!
■ Similar trick (indirect commitments) can be used for regular

channels as well

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

Lightning Cross Over - Hierarchical Prefix Addressing

● How to handle receives over multi-node (network aggregated) mp-chan?
○ Today HTLCs targeted at single destination public key
○ Multi-node channels potentially contain hundreds of nodes

● Solution:
○ Individual parties within the mp-chan self-organize to assign address

based on up-to-date structure of the commitment tree
○ Destination address within commitment tree placed in EOB (extra onion

blob)
○ Parsed from left-to-right respecting fan out of intermediate allocations

to dispatch payment to proper leaf node:
■ Ordering of keys in allocation sorted to allow deterministic parsing
■ Example for 8 -> 4 -> 2 (x4) channel:

● [10][1]

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

Cross Channel Swaps via Swaptions

● Possible to exchange positions within a particular channel, or even trade
positions within distinct channels
○ Swap itself creates new channel state, no need to thread prior history

● Vanilla atomic swaps have free option issues as single party can halt execution
● Atomic Swaption:

○ Alice sells Bob the option to swap positions within same/distinct channel
○ Regular atomic swaps use a single secret
○ Atomic swaptions instead involve two distinct secrets
○ Two layers of transactions:

■ Acceptance layer:
● Alice can accept by revealing secret A which leads to

second-layer that unilaterally pays Bob the premium
■ Exercise layer:

● Bob can exercise the option till expiration by revealing his
secret B

● Potentially allows the sale/transfer of channels within distinct channels!

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

Channel Orchestration Servers

● Distributed version requires quadratic communication for re-allocations
scaling with number of participants in internal node
○ Shifting to single-key n-of-n (schnorr) requires additional round trips for

each signature
● Can use a message passing server to reduce to linear communication

between parties
○ Channel participants use server as rendezvous location over Tor onion

services
○ Leaks timing information of updates, but server doesn’t necessarily know

which channels are being updated
■ Participants can send/receive dummy messages mix-net style

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

Channel Orchestration Servers - Offline Payment Receipt

● Why not also use orchestration server as offline mailbox?
○ Participants pay orchestrator to deliver message with set deadline
○ Allows for quasi-offline payment sending/receipt
○ During clearing phase (HTLC add), if participants not offline within

threshold, cancel back
○ During settle phase, fully async as receiver only comes online to reveal

secret
● Similar model possible over “regular” network, but would need to pre-pay to

several parties to compensate for longer HTLC lifetime

Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore

et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo

consequat.

Open Problems

● Cut-thru to reduce on-chain footprint in mass exit case?
● Usage of covenants to allow hook transaction

modifications w/o all parties involved?
● Health checking protocol to splice out inactive parties

within allocations
● Language for expressing complex multi-step

re-allocations and swaps?
○ BitML?

● Efficient execution of fees+timelocks in
packet-switched model?

https://eprint.iacr.org/2018/398.pdf

Thank You!
Questions?

