Forward Blocks

On-chain/settlement capacity increases without the
hard-fork

Mark Friedenbach
October 6, 2018

No organizational affiliation

Introduction

Forward blocks arose out of considering how a proof-of-work change
could be accomplished as a soft-fork, combined with mechanisms for
soft-fork deployment of privacy-enhancing alternative ledgers. It was
later discovered that it also provides scaling benefits including:

» Improved censorship resistance through sharding.
+ Direct on-chain scaling up to 3584x (for bitcoin specifically).

It also provides a few miscellaneous other benefits such as a
linearized block subsidy and the underlying ledger support for future
chain enhancements such as confidential transactions and
sidechains.

Note: This talk is a summary of the paper, which has too many
moving parts to be fully described in a 30 min talk.

A soft fork is a tightening of the consensus rules such that some
blocks which were previously valid are now invalid, but no previously
invalid blocks become valid. Simply: old nodes still see the chain
advance.

A forwards compatible soft fork is a soft-fork for which un-upgraded
nodes still receive and process all transactions.

We are specifically interested in forwards compatibility because it fits
our prior model for the safety of soft forks:

* Non-mandatory upgrades paths.
» No flag days beyond which chain access is limited.

 An ability for un-upgraded infrastructure to continue working
during and after the transition period.

A note on centralization risks

Centralization risks broadly fall into two categories:

1. Increasing the cost of validation, or the amount of resources
(computation, memory, bandwidth) required to initialize and
maintain a full-node validator so as to be able to transact on the
network without trusted third parties.

Cost of validation is proportional to the number of transactions in full
nodes and the number of blocks for SPV nodes.

2. Reducing censorship resistance, which is that property which
results from any user being able to make a fair attempt at mining
a block, with the chance of success proportional to their share of
the hash rate, no matter how large or small.

Censorship resistance has a non-linear relationship to the ratio of
block propagation time to the average block interval.

Dual Proof-of-Work

A block subject to 2 proofs-of-work?

No.

Forward blocks involves separate chains with separate proof-of-work
functions, rather than a single block chain with each block subject to
multiple work requirements.

But just for the moment, let’s use a single block subject to two
proofs-of-work as an example.

Achieving a transition in difficulty

With a block subject to two work functions, the difficulty needs to
non-disruptively transition from the old proof-of-work to the new.

The easiest way to do this is have a sliding block reward that
transitions block reward from going primarily to the solver of the old
proof-of-work challenge to the new, over of period of time long
enough as to prevent mining disruption.

This is expressed by a function P(t) € [0, 1] which represents the
proportion of the block reward that goes to the new proof-of-work
miners vs. the old:

t
P(t) = min(z——, 1
() = min(g5 1)
At the end of the transition period, in this case 3.5yr, the new
proof-of-work will represent nearly all of the security / network hash
power, and the old proof-of-work will be at minimum difficulty.

New proof-of-work, or merge mining?

We are given an opportunity with the deployment of forward blocks to
change proof-of-work functions. But we not required to do so—the
“new proof of work” could be double-SHA256 merged mining.

I do not wish that “proof-of-work upgrade” be interpreted as an
adversarial move against the current set of bitcoin/double-SHA256
miners. Rather it is a direct consequence of the design that the
forward block chain requires a new proof-of-work function. A
compatible form of salted merge mining is a sufficiently different
function to work for this purpose.

Or it could be something entirely new rendering most existing
hardware useless once the transition is complete. Either approach is
permitted by this proposal, and we will make no further comment on
what this choice should be, which is entirely orthogonal to the
adoption of forward blocks as a scaling solution.

Raising the Block-Weight Limit

Forced hard-forks

The commonly discussed “safe” mechanism'for raising the block
weight limit is the forced hard fork: move transactions into a
committed extension block with higher aggregate limits—and/or any
other consensus changes—and then force the old blocks to be empty.

Confirming the validation of transactions is only possible by
upgrading to a client which understands the extension block.
Un-upgraded nodes are protected from seeing divergent spend
histories?by the fact that the old blocks are kept empty. To restore
service, they are required to upgrade.

"Forced hard forks are described as safe, but safety is relative. | object to describing a
purposeful denial of service attack against un-upgraded nodes as “safe.”

2Again, I'd contend that empty blocks should be considered divergent with material
consequences. A lightning node needs to see its channel closure, for example.

Forward blocks

Forced hard forks break forward compatibility, but note:

« If we ensure that the extension block only violates aggregate,
block-level consensus rules, then all transactions in the new
blocks would hypothetically be valid on the old chain.?

* Instead of forced empty blocks we can have the old compatibility
block chain repeat the same transactions in the same order.

» By switching from extension blocks to a separate chain with
loosely coupled state, the time warp bug can be exploited to
lower compatibility block intervals to keep pace with higher limits.

This new chain which determines transaction ordering we call the
forward block chain.*

3Except for coinbases and their children. We have a way of dealing with this.
4A reference to forward observers of mobile infantry units that scout the path ahead.

Two chains, two separate ways to scale

The forward block chain achieves on-chain scaling by increasing its
per-block aggregate weight limit while maintaining a fixed, long
duration target inter-block interval. This achieves the smallest
possible impact on centralization risks for both full validators and SPV
nodes.

The compatibility block chain can only scale by exploiting the time
warp bug to lower its expected inter-block interval. Lowering the block
interval is strongly centralizing on the compatibility chain, but this has
no effect on censorship resistance because transaction ordering is
already determined solely by the forward block chain.®

5During the transition between proof-of-works, we wouldn’t want the forward chain to
scale so much that the compatibility chain becomes centralized before the forward
chain has enough mining security. The flexible cap will prevent this.

Some annoying loose ends...

An (incomplete!) list of issues left open by this explanation:

» Many compatibility blocks could be needed to process a single
forward block, so having the same miner produce these blocks
unacceptably introduces the notion of work progress.

* A coinbase transaction of the forward block is not seen by
un-upgraded nodes, so it cannot enter the UTXO set. Both
miners need to be paid by the compatibility block’s coinbase.

+ Since different miners®generate forward and compatibility blocks,
there needs to be some form of state synchronization in order for:

» Compatibility block miners to learn forward block transactions; and
» Forward block miners to learn the coinbase transactions of the
compatibility chain, so as to process them into the UTXO set.

6The same set of miners if merged mining is used, but miner of a specific forward
block would not mine the corresponding compatibility blocks except by random chance.

Loosely Coupled Chain State

Cross-chain header commitments

Both the forward chain and the compatibility chain commit to the
headers of the other. When a header reaches 100 confirmations, it
becomes locked-in:

* Any locked-in header must reference a valid block.

* When the compatibility chain locks in a forward block header, the
transactions of that block are added to the transaction processing
queue and its coinbase outputs to the coinbase payout queue.

* When the forward chain locks in a compatibility block header, the
coinbase of that block enters the UTXO set.”

7Subject to the usual 100-block maturity requirement.

One coinbase shared by two chains

The coinbase of the forward block has outputs that cannot be spent,
so they are repeated in the compatibility block’s coinbase after lock-in.

The forward block miner claims a portion P of the coinbase reward of
their block. The remaining 1 — P value goes into a fund to pay
compatibility block miners. The compatibility block miner gets the
current size of the fund.

Using the compatibility coinbase to synchronize payments based on
the state of multiple chains is a common pattern we will reuse.

A Flexible Weight Limit

Initial parameters of the forward block chain

Target block interval: 15 min

Increasing the block interval from 10 min to 15 min achieves a
one-shot boost in censorship resistance, at the cost of lengthening
confirmation times. For a chain tailored to handling settlement
transactions, that's a good trade-off.

Initial max block weight: 6 MWe

With 15 min blocks, this represents the same transaction processing
rate as the original chain’s limit of 4 MWe blocks every 10 min.

Growing the forward block chain with a flexcap

The forward block miner is allowed to bias their work target by up to
+25%, making their blocks easier or harder to solve. In return, the
aggregate weight limit of their block is adjusted:

T T
To
X € [~0.25,0.25]

w(x) = wp(2x — 4x?)

Every L = 2016 forward blocks, two things happen:

» The base limit wy adjusts to the (possibly gain limited) average of
the past L declared weights.

» The new-PoW difficulty adjusts up or down as necessary to
maintain the 15 min inter-block interval.

Offset reward as a function of difficulty bias

—0.25

—0.50

Block Reward Adjustment (%)

—0.75 A

—-0.25 —-0.15 —0.05 0.00 0.05 0.15 0.25
Proof-of-Work Difficulty Bias (%)

Figure 1: Offset reward as a function of difficulty bias. 15

Time-warping the compatibility chain

For compatibility blocks that are not the last block in a difficulty
adjustment window:

1. If after constructing the block the transaction queue is empty, no
additional rules apply.

2. Otherwise, if the next transaction in the queue is non-final for
reasons of a time-based lock-time or sequence-lock, the block
timestamp is set to the minimum value necessary to satisfy that
lock condition.

3. Otherwise, the block’s timestamp must be set to its minimum
allowed value, which is one more than the median of the 11
blocks prior.

Time-warping the compatibility chain (2)

For compatibility blocks that are the last block in a difficulty
adjustment window:

The warp factor is a ratio Q equal to the forward block utilization over
the original chain’s settlement capacity:

w
Q= 6MWe

The Satoshi difficulty adjustment formula is applied in reverse to
calculate the block timestamp that would cause the adjustment
needed to handle Q blocks in expectation every 600 s.

A Smooth Subsidy Schedule

Eliminate the “halvening” with a continuous subsidy curve

We have the freedom to set a different subsidy schedule in forward
blocks, so long as:

1. The cumulative subsidy never exceeds the 21 x 108 btc total
monetary base; and

2. The cumulative subsidy at any given time does not exceed the
bitcoin subsidy schedule by too large a margin as to cause
unreasonable delays in the coinbase payment queue.

Most notably, we can use this opportunity to smooth out the step
function used to calculate subsidy, making subsidy a continuous
function.

Eliminate the “halvening” with a continuous subsidy curve

501 —— —— Satoshi
——— Linear Interp.
€ 60ct2018

40 4

<

S 304

i

>

il

3 20+

>

(%]

AN

10 1

S

0 5 10 15 20 25
Time (years)

Figure 2: Alternative Subsidy Curve I

Multiple Forward Block Chains

Sharding: multiple forward block chains

A very significant gain in censorship resistance can be had by
sharding®the forward block chain into multiple chains with disjoint
UTXO sets.

By splitting the chain into M shards, requiring transactions source
their funds from a single shard only, and using a separately-salted
work function for each, a shard block will appear in expectation every
1smir/yy, but blocks from a given shard chain will be separated by a full
15 min. This achieves an M-fold increase in censorship resistance for
a given aggregate weight across all shards, if activity is evenly
distributed amongst the shards.

8Sharding is a term of art borrowed from the database field. The “sharding” described
here is largely not the sharding talked about in crypto currency projects, but it is
nevertheless the correct term to use.

20

Transferring value between shards

Table 1: Shard Identifier Prefixes A native segwit output can be
prefixed with a 1 B value indicating
the destination shard identifier.

Shard Prefix Opcode

1 0x00 FALSE This makes it unspendable on the
2 0x4f 1NEGATE forward block chain. Note that
3 0x51 TRUE NOP2 and NOP 3 are not usable as
4 0x52 2 such on bitcoin.
18 0x60 16 These prefixed outputs are added
19 0x61 NOP to the coinbase payout queue
20 0x74 DEPTH verbatim, and the value is claimed
21 0xb0 NOP1 by the compatibility block miner
22 0xb3 NOP4 and added to the carry-forward
balance.

28 0xb9 NOP10

21

The high end of scaling limits

The compatibility chain’s block timestamp must tick forward once
every 6 blocks, which gives a maximum of 3600 compatibility blocks
per 600 s legacy block interval.

This is closely matched by a 768 MWe maximum weight on each of
28 separate shards with a 900 s block interval.

Together this would allow for 14.336 GWe of transactions to be
processed every 10 min, which is about 1tx/pp/day for everyone
currently alive.

To prevent denial of service from premature growth, it is
recommended that a gain limiter of +0.78125% per adjustment
period be applied, which results in a maximum growth of +14.5 % /yr.

22

Extension Outputs

Generalized ledger transfer mechanism

The coinbase payout queue is useful anytime discrete accounting
systems are used for maintaining a ledger of value within the same
block chain. As examples:

+ Splitting the block chain into multiple shards, with transfers
between shards requiring coordination via explicit transfers, as
already seen;

» Obscuring transaction value via confidential transactions (with or
without mimblewimble kernel support);

» Obscuring the transaction graph via support of ring signature or
zero-knowledge spends; or

 Transferring value between multiple sidechains via a two-way
peg mechanism.

23

Generalized coinbase maturity mechanism

Coinbase payout queues are also useful for any circumstance where
the value or other detail of an output depends on the circumstances
of how the enclosing transaction is mined, and therefore a maturation
process is required to prevent the fungibility risk that comes with
allowing transactions that can be invalidated with a reorg. Examples
from this problem domain include:

* Block reward for forward and compatibility block miners, as
already seen;

A rebatable fee market where excess fee beyond the clearing fee
rate is returned to the transaction author; or

 Transaction expiry, or other mechanisms by which a transaction
may become permanently invalid for some reason other than a
reorg and double-spend.

24

Questions?

	Introduction
	Dual Proof-of-Work
	Raising the Block-Weight Limit
	Loosely Coupled Chain State
	A Flexible Weight Limit
	A Smooth Subsidy Schedule
	Multiple Forward Block Chains
	Extension Outputs

