
Fraud ProofsFraud Proofs

Maximising SPV Security and Scaling Maximising SPV Security and Scaling
Blockchains with Dishonest MajoritiesBlockchains with Dishonest Majorities

Mustafa Al-Bassam

6 October 2018

06/10/18 2

Motivation

Currently there is a huge
trade off between
decentralisation and on-
chain scalability.

Because SPV nodes (non
fully validating nodes) will
accept invalid blocks.

They assume that the
majority of the consensus
is honest.

Decentralisation

On-chain
throughput

06/10/18 3

Can we reduce this tradeoff?

The big question: how can we make non
fully validating (SPV) nodes reject
invalid blocks, so that they don’t have
to trust miners?
Let’s use fraud proofs and data availability proofs!

06/10/18 4

Read the full paper (33 pages)

Fraud Proofs: Maximising
Light Client Security and
Scaling Blockchains with
Dishonest Majorities

Mustafa Al-Bassam, Alberto
Sonnino, Vitalik Buterin

https://arxiv.org/abs/
1809.09044

06/10/18 5

Fraud proofs: the basic idea

06/10/18 6

Fraud proofs: the basic idea

...but what if the miner
doesn’t release the tx
data?

A: Then we can’t
generate a fraud
proof. 😱

= We also need a way to
guarantee data availability!

06/10/18 7

Earlier discussion on fraud proofs

The original Bitcoin whitepaper briefly mentions “alerts”;
which are messages that full nodes can send to SPV clients
to alert them the block is invalid. (Vulnerable to DoS.)

G. Maxwell and P. Todd have done some work on “compact
fraud proofs”. Early proposals require a different fraud
proof for each way to violate the rules. We improve on this.

G. Maxwell has discussed on IRC using erasure coding for
data availability with a scheme using a “designated source”
with PoW rate-limiting (and no way to deal with incorrectly
generated codes?)

06/10/18 8

Generalising the blockchain as a
state transition system

Each transaction reads and modifies the state of the
blockchain.

transition(state, tx) = state' or error

state
i

state
i+1

state
i+2 state

i+3
state

i+4

tx
i+1

tx
i+2

tx
i+3

tx
i+4

Block X Block X+1

06/10/18 9

Generalising the blockchain as a
state transition system

Each transaction reads and modifies the state of the
blockchain.

transition(state, tx) = state' or error

But what if one of the transitions is errorneous?

We need a way to prove this.

state
i

state
i+1

state
i+2 state

i+3
state

i+4

tx
i+1

tx
i+2

tx
i+3

tx
i+4

Block X Block X+1

06/10/18 10

Representing the entire state as a
Merkle root

We can store the state as a key-value store.

Key: UTXO ID. Value: 1 if unspent, 0 otherwise.

We can use a Sparse Merkle tree to do this.

A tree with 2256 leaves (every possible SHA-256 hash).

06/10/18 11

Representing the entire state as a
Merkle root

Merkle proofs are still O(log(n)) as most branches will only
contain leaves with default values (0).

To access key K in the tree, access the hash(K)th item.

We can thus represent the entire state of the blockchain as a
single Merkle root.

06/10/18 12

Generalising the blockchain as a
state transition system

Each transaction changes the state root of the blockchain.

transitionRoot(stateRoot, tx, witnesses) = stateRoot' or error

The witnesses of a transaction are Merkle proofs of all the
parts of the state the transactions accesses.

Execution trace: we need to include the post-state root of
transactions in the block. (e.g. every few transactions)

state
Root

i

tx
i+1

tx
i+2

tx
i+3

tx
i+4

Block X Block X+1

state
Root

i+1

state
Root

i+2

state
Root

i+3

state
Root

i+4

06/10/18 13

Generalising the blockchain as a
state transition system

The fraud proofs consisters of the transaction and its pre-
state root, post-state root, witnesses (+ Merkle proofs).

If the Merkle proofs are valid, and
rootTransition(stateRoot

i+1
, tx

i+1
, witnesses

i+1
) != stateRoot

i+2

then the fraud proof is valid.

state
Root

i

tx
i+1

tx
i+2

tx
i+3

tx
i+4

Block X Block X+1

state
Root

i+1

state
Root

i+2

state
Root

i+3

state
Root

i+4

Fraud proof

06/10/18 14

Generalising the blockchain as a
state transition system

You don’t have to include the state root after every
transaction – this saves block space but the fraud proof gets
bigger.

state
Root

i

tx
i+1

tx
i+2

tx
i+3

tx
i+4

Block X Block X+1

state
Root

i+1

state
Root

i+3

state
Root

i+4

Fraud proof

06/10/18 15

The data availability problem

...but what if the miner
doesn’t release the tx
data?

A: Then we can’t
generate a fraud
proof. 😱

= We also need a way to
guarantee data availability!

06/10/18 16

Erasure coding

Using erasure coding, you can extend data t pieces long to
2t pieces, such that you can recover the whole data from any
t pieces.

2t

t

Original data Extended data

06/10/18 17

Naive data availability scheme

We can require miners to commit to the Merkle root of the
erasure coded verison of the block data. In order for a miner
to hide any piece of the block, they must hide 50%.

Thus clients can randomly sample parts of the block (with

replacement), and if 50% is hidden, then there is a 2-s chance of
landing on an unavailable piece, then the block is rejected.

Clients gossip pieces to full nodes for recovery.
2t

t

Original data Extended data

06/10/18 18

Naive data availability scheme

Problem: what if the miner incorrectly generates the erasure
code?

In order to prove this, the fraud proof consists of the entire
block, as clients will need to download and regenerate the
erasure code to check if it’s correct.

That’s O(blocksize). Back to square one!

2t

t

Original data Extended data

06/10/18 19

Multidimensional coding

We can use multidimensional coding to fix this.

If any row or column is incorrectly generate, a fraud proof
that the code is incorrectly generated is limited to that
specific row or column. That’s O(sqrt(blocksize)).

Fraud proof

06/10/18 20

Multidimensional coding

Miner has to hide roughly 25% of the square to hide any
pieces.

06/10/18 21

Probability analysis

What is the probability of a client landing on at least one
available piece if the miner has hidden ~25% of the square
(if sampling without replacement)?

60% after 3 samplings; 99% after 15 samplings.

06/10/18 22

Selective releasing of pieces

What if a miner only releases pieces as clients ask for them?

Then the miner can always pass the sampling challenge of the
first couple of hundred to thousand clients.

The exact number of how many clients can be fooled depends
on how many samples they make each (s) and how wide is
the square (k).

06/10/18 23

Preventing selective releasing of
pieces

We can prevent this by assuming an enhanced network
model.

Clients send requests anonymously.

The order in which requests are received by the network are
uniformly random (i.e. client’s sampled are interleaved). For
example, using a mix net.

This would mean that a miner would have same probability
of fooling all clients, including the first ones to ask for
samples.

Because requests are unlinkable to clients; sampling
challenges cannot be satifisfied on a per-client basis.

06/10/18 24

Block validity security assumptions
comparison

What additional security assumptions are necessary to only
accept valid blocks?

Full nodes SPV clients SPV clients +
fraud proofs

+ 51% of consensus is
honest

+ at least one honest
full node in connected
network graph
+ maximum network
delay to receive proofs
(e.g. 5 mins)
+ minimum number of
light clients (few
hundred)

06/10/18 25

Implementation

2D Reed-Solomon Merkle tree data availability scheme:
https://github.com/musalbas/rsmt2d

Fraud proofs prototype:
https://github.com/asonnino/fraudproofs-prototype

Sparse Merkle tree library with support for state transition
witness verification:
https://github.com/musalbas/smt

06/10/18 26

Performance: space/bandwidth

06/10/18 27

Performance: computation

06/10/18 28

Read the full paper (33 pages)

Fraud Proofs: Maximising
Light Client Security and
Scaling Blockchains with
Dishonest Majorities

Mustafa Al-Bassam, Alberto
Sonnino, Vitalik Buterin

https://arxiv.org/abs/
1809.09044

06/10/18 29

Thank you

Questions?

Twitter: @musalbas

Email: mus@musalbas.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

